Контакты

В чем измеряется единица физической величины. Физические величины

Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

где числовое значение величины, ее единица.

Следует различать истинное и действительное значения физической величины.

Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

Однако, пользуясь специальными техническими средствами, можно определить действительные

значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

Различают измерения прямые и косвенные.

Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.


Физическая величина - свойство физических объектов, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого из них. Качественная сторона понятия "физическая величина" определяет ее род (например, электрическое сопротивление как общее свойство проводников электричества), а количественная - ее "размер" (значение электрического сопротивления конкретного проводника, например R = 100 Ом). Числовое значение результата измерения зависит от выбора единицы физической величины.

Физическим величинам присвоены буквенные символы, используемые в физических уравнениях, выражающих связи между физическими величинами, существующие в физических объектах.

Размер физической величины - количественная определенность величины, присущая конкретному предмету, системе, явлению или процессу.

Значение физической величины - оценка размера физической величины в виде некоторого числа принятых для нее единиц измерения. Числовое значение физической величины - отвлеченное число, выражающее отношение значения физической величины к соответствующей единице данной физической величины (например, 220 В - значение амплитуды напряжения, причем само число 220 и есть числовое значение). Именно термин "значение" следует применять для выражения количественной стороны рассматриваемого свойства. Неправильно говорить и писать "величина тока", "величина напряжения" и т. д., поскольку ток и напряжение сами являются величинами (правильным будет применение терминов "значение силы тока", "значение напряжения").

При выбранной оценке физической величины ее характеризуют истинным, действительным и измеренным значениями.

Истинным значением физической величины называют значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Определить экспериментально его невозможно вследствие неизбежных погрешностей измерения.

Это понятие опирается на два основных постулата метрологии:

§ истинное значение определяемой величины существует и оно постоянно;

§ истинное значение измеряемой величины отыскать невозможно.

На практике оперируют понятием действительного значения, степень приближения которого к истинному значению зависит от точности средства измерения и погрешности самих измерений.

Действительным значением физической величины называют ее значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для определенной цели может быть использовано вместо него.

Под измеренным значением понимают значение величины, отсчитанное по индикаторному устройству средства измерения.

Единица физической величины - величина фиксированного размера, которой условно присвоено стандартное числовое значение, равное единице..

Единицы физических величин делят на основные и производные и объединяют в системы единиц физических величин . Единица измерения устанавливается для каждой из физических величин с учетом того, что многие величины связаны между собой определенными зависимостями. Поэтому лишь часть физических величин и их единиц определяются независимо от других. Такие величины называют основными . Остальные физические величины - производные и их находят с использованием физических законов и зависимостей через основные. Совокупность основных и производных единиц физических величин, образованная в соответствии с принятыми принципами, называется системой единиц физических величин . Единица основной физической величины является основной единицей системы.

Международная система единиц (система СИ; SI - франц. Systeme International ) была принята XI Генеральной конференцией по мерам и весам в 1960 г.

В основу системы СИ положены семь основных и две дополнительные физические единицы. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела (табл. 1).

Таблица 1. Единицы Международной системы СИ

Наименование

Размерность

Наименование

Обозначение

международное

Основные

килограмм

Сила электрического тока

Температура

Количество вещества

Сила света

Дополнительные

Плоский угол

Телесный угол

стерадиан

Метр равен расстоянию, проходимому светом в вакууме за 1/299792458 долю секунды.

Килограмм - единица массы, определяемая как масса международного прототипа килограмма, представляющего цилиндр из сплава платины и иридия.

Секунда равна 9192631770 периодам излучения, соответствующего энергетическому переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывал бы силу взаимодействия, равную 210 -7 Н (ньютон) на каждом участке проводника длиной 1 м.

Кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, т. е. температуры, при которой три фазы воды - парообразная, жидкая и твердая - находятся в динамическом равновесии.

Моль - количество вещества, содержащего столько структурных элементов, сколько содержится в углероде-12 массой 0,012 кг.

Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 54010 12 Гц (длина волны около 0,555 мкм), чья энергетическая сила излучения в этом направлении составляет 1/683 Вт/ср (ср - стерадиан).

Дополнительные единицы системы СИ предназначены только для образования единиц угловой скорости и углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан (рад ) - угол между двумя радиусами окружности, длина дуги которой равна этому радиусу. В практических случаях часто используют такие единицы измерения угловых величин:

градус - 1 _ = 2р/360 рад = 1,745310 -2 рад;

минута - 1" = 1 _ /60 = 2,9088 10 -4 рад;

секунда - 1"= 1"/60= 1 _ /3600 = 4,848110 -6 рад;

радиан - 1 рад = 57 _ 17"45" = 57,2961 _ = (3,4378 10 3)" = (2,062710 5)".

Стерадиан (ср ) - телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Измеряют телесные углы с помощью плоских углов и расчета

где б - телесный угол; ц - плоский угол при вершине конуса, образованного внутри сферы данным телесным углом.

Производные единицы системы СИ образуют из основных и дополнительных единиц.

В области измерений электрических и магнитных величин имеется одна основная единица - ампер (А). Через ампер и единицу мощности - ватт (Вт), единую для электрических, магнитных, механических и тепловых величин, можно определить все остальные электрические и магнитные единицы. Однако на сегодняшний день нет достаточно точных средств воспроизведения ватта абсолютными методами. Поэтому электрические и магнитные единицы основываются на единицах силы тока и производной от ампера единицы емкости - фарада.

К производным от ампера физическим величинам также относятся:

§ единица электродвижущей силы (ЭДС) и электрического напряжения - вольт (В);

§ единица частоты - герц (Гц);

§ единица электрического сопротивления - ом (Ом);

§ единица индуктивности и взаимной индуктивности двух катушек - генри (Гн).

В табл. 2 и 3 приведены производные единицы, наиболее употребляемые в телекоммуникационных системах и радиотехнике.

Таблица 2. Производные единицы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Энергия, работа, количество теплоты

Сила, вес

Мощность, поток энергии

Количество электричества

Электрическое напряжение, электродвижущая сила (ЭДС), потенциал

Электрическая емкость

L -2 M -1 T 4 I 2

Электрическое сопротивление

Электрическая проводимость

L -2 M -1 T 3 I 2

Магнитная индукция

Поток магнитной индукции

Индуктивность, взаимная индуктивность

Таблица 3. Единицы СИ, применяемые в практике измерений

Величина

Наименование

Размерность

Единица измерения

Обозначение

международное

Плотность электрического тока

ампер на кв.метр

Напряженность электрического поля

вольт на метр

Абсолютная диэлектрическая проницаемость

L 3 M -1 T 4 I 2

фарад на метр

Удельное электрическое сопротивление

ом на метр

Полная мощность электрической цепи

вольт-ампер

Реактивная мощность электрической цепи

Напряженность магнитного поля

ампер на метр

Сокращенные обозначения единиц как международных, так и русских, названных в честь великих ученых, пишутся с заглавных букв, например ампер - А; ом - Ом; вольт - В; фарад - Ф. Для сравнения: метр - м, секунда - с, килограмм - кг.

На практике применение целых единиц не всегда удобно, так как в результате измерений получают очень большие или очень малые их значения. Поэтому в системе СИ установлены ее десятичные кратные и дольные единицы, которые образуются с помощью множителей. Кратные и дольные единицы величин пишутся слитно с наименованием основной или производной единицы: километр (км), милливольт (мВ); мегаом (МОм).

Кратная единица физической величины - единица, большая в целое число раз системной, например килогерц (10 3 Гц). Дольная единица физической величины - единица, меньшая в целое число раз системной, например микрогенри (10 -6 Гн).

Наименования кратных и дольных единиц системы СИ содержат ряд приставок, соответствующих множителям (табл. 4).

Таблица 4. Множители и приставки для образования десятичных кратных и дольных единиц СИ

Множитель

Приставка

Обозначение приставки

международное

В принципе, можно представить себе какое угодно большое число разных систем единиц, но широкое распространение получили лишь несколько. Во всем мире для научных и технических измерений и в большинстве стран в промышленности и быту пользуются метрической системой.

Основные единицы.

В системе единиц для каждой измеряемой физической величины должна быть предусмотрена соответствующая единица измерения. Таким образом, отдельная единица измерения нужна для длины, площади, объема, скорости и т.д., и каждую такую единицу можно определить, выбрав тот или иной эталон. Но система единиц оказывается значительно более удобной, если в ней всего лишь несколько единиц выбраны в качестве основных, а остальные определяются через основные. Так, если единицей длины является метр, эталон которого хранится в Государственной метрологической службе, то единицей площади можно считать квадратный метр, единицей объема – кубический метр, единицей скорости – метр в секунду и т.д.

Удобство такой системы единиц (особенно для ученых и инженеров, которые гораздо чаще встречаются с измерениями, чем остальные люди) в том, что математические соотношения между основными и производными единицами системы оказываются более простыми. При этом единица скорости есть единица расстояния (длины) в единицу времени, единица ускорения – единица изменения скорости в единицу времени, единица силы – единица ускорения единицы массы и т.д. В математической записи это выглядит так: v = l /t , a = v /t , F = ma = ml /t 2 . Представленные формулы показывают «размерность» рассматриваемых величин, устанавливая соотношения между единицами. (Аналогичные формулы позволяют определить единицы для таких величин, как давление или сила электрического тока.) Такие соотношения носят общий характер и выполняются независимо от того, в каких единицах (метр, фут или аршин) измеряется длина и какие единицы выбраны для других величин.

В технике за основную единицу измерения механических величин обычно принимают не единицу массы, а единицу силы. Таким образом, если в системе, наиболее употребительной в физических исследованиях, металлический цилиндр принимается за эталон массы, то в технической системе он рассматривается как эталон силы, уравновешивающей действующую на него силу тяжести. Но поскольку сила тяжести неодинакова в разных точках на поверхности Земли, для точной реализации эталона необходимо указание местоположения. Исторически было принято местоположение на уровне моря на географической широте 45° . В настоящее же время такой эталон определяется как сила, необходимая для того, чтобы придать указанному цилиндру определенное ускорение. Правда, в технике измерения проводятся, как правило, не со столь высокой точностью, чтобы нужно было заботиться о вариациях силы тяжести (если речь не идет о градуировке измерительных приборов).

Немало путаницы связано с понятиями массы, силы и веса. Дело в том, что существуют единицы всех этих трех величин, носящие одинаковые названия. Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом. Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике. ТЕПЛОТА.

Метрическая система единиц.

Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.

Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Эталоны длины и массы, международные прототипы.

Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45° , иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.

Международная система СИ.

Метрическая система была весьма благосклонно встречена учеными 19 в. частично потому, что она предлагалась в качестве международной системы единиц, частично же по той причине, что ее единицы теоретически предполагались независимо воспроизводимыми, а также благодаря ее простоте. Ученые начали выводить новые единицы для разных физических величин, с которыми они имели дело, основываясь при этом на элементарных законах физики и связывая эти единицы с единицами длины и массы метрической системы. Последняя все больше завоевывала различные европейские страны, в которых ранее имело хождение множество не связанных друг с другом единиц для разных величин.

Хотя во всех странах, принявших метрическую систему единиц, эталоны метрических единиц были почти одинаковы, возникли различные расхождения в производных единицах между разными странами и разными дисциплинами. В области электричества и магнетизма появились две отдельные системы производных единиц: электростатическая, основанная на силе, с которой действуют друг на друга два электрических заряда, и электромагнитная, основанная на силе взаимодействия двух гипотетических магнитных полюсов.

Положение еще более усложнилось с появлением системы т.н. практических электрических единиц, введенной в середине 19 в. Британской ассоциацией содействия развитию науки для удовлетворения запросов быстро развивающейся техники проводной телеграфной связи. Такие практические единицы не совпадают с единицами обеих названных выше систем, но от единиц электромагнитной системы отличаются лишь множителями, равными целым степеням десяти.

Таким образом, для столь обычных электрических величин, как напряжение, ток и сопротивление, существовало несколько вариантов принятых единиц измерения, и каждому научному работнику, инженеру, преподавателю приходилось самому решать, каким из этих вариантов ему лучше пользоваться. В связи с развитием электротехники во второй половине 19 и первой половине 20 вв. находили все более широкое применение практические единицы, которые стали в конце концов доминировать в этой области.

Для устранения такой путаницы в начале 20 в. было выдвинуто предложение объединить практические электрические единицы с соответствующими механическими, основанными на метрических единицах длины и массы, и построить некую согласованную (когерентную) систему. В 1960 XI Генеральная конференция по мерам и весам приняла единую Международную систему единиц (СИ), дала определение основных единиц этой системы и предписала употребление некоторых производных единиц, «не предрешая вопроса о других, которые могут быть добавлены в будущем». Тем самым впервые в истории международным соглашением была принята международная когерентная система единиц. В настоящее время она принята в качестве законной системы единиц измерения большинством стран мира.

Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости – метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт – это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.

Метр – это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983.

Килограмм равен массе международного прототипа килограмма.

Секунда – продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.

Радиан – плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.

Таблица 3. ПРИСТАВКИ И МНОЖИТЕЛИ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ МЕЖДУНАРОДНОЙ СИСТЕМЫ СИ

экса деци
пета санти
тера милли
гига микро

мк

мега нано
кило пико
гекто фемто
дека

да

атто

Таким образом, километр (км) – это 1000 м, а миллиметр – 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)

Первоначально предполагалось, что одной из основных единиц должен быть грамм, и это отразилось в названиях единиц массы, но в настоящее время основной единицей является килограмм. Вместо названия мегаграмм употребляется слово «тонна». В физических дисциплинах, например для измерения длины волны видимого или инфракрасного света, часто применяется миллионная доля метра (микрометр). В спектроскопии длины волн часто выражают в ангстремах (Å); ангстрем равен одной десятой нанометра, т.е. 10 - 10 м. Для излучений с меньшей длиной волны, например рентгеновского, в научных публикациях допускается пользоваться пикометром и икс-единицей (1 икс-ед. = 10 –13 м). Объем, равный 1000 кубических сантиметров (одному кубическому дециметру), называется литром (л).

Масса, длина и время.

Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1Ч 10 –8 . Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.

Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной (1Ч 10 –9). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился.

Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1Ч 10 –12 – гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина – частота – уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир.

Механика.

Температура и теплота.

Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.

Термодинамическая шкала температуры.

Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T 2 /T 1 = –Q 2 Q 1 , где Q 2 и Q 1 – количества теплоты, передаваемые каждому из резервуаров (знак «минус» говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем . Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT , где P – давление, V – объем и R – газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.

Международная температурная шкала.

В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.

Существуют две международные температурные шкалы – Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.

Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.

Температурная шкала Фаренгейта.

Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам – температуре таяния льда (32° F) и кипения воды (212° F) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.

Единицы теплоты.

Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории – «термохимическая» (4,1840 Дж) и «паровая» (4,1868 Дж). «Калория», которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.

Электричество и магнетизм.

Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ.

Ниже дается перечень электрических и магнитных единиц системы СИ.

Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2Ч 10 - 7 Н.

Вольт, единица разности потенциалов и электродвижущей силы. Вольт – электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества (электрического заряда). Кулон – количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

Фарада, единица электрической емкости. Фарада – емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока. Вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

Тесла, единица магнитной индукции. Тесла – магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м 2 , перпендикулярную линиям индукции, равен 1 Вб.

Практические эталоны.

Свет и освещенность.

Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м 2 , а интенсивность световой волны – в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540Ч 10 12 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4 p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

Рентгеновское и гамма-излучение, радиоактивность.

Рентген (Р) – это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.



    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Физическая … Википедия

    Физическая величина это количественная характеристика объекта или явления в физике, либо результат измерения. Размер физической величины количественная определенность физической величины, присущая конкретному материальному объекту, системе,… … Википедия

    У этого термина существуют и другие значения, см. Фотон (значения). Фотон Символ: иногда … Википедия

    У этого термина существуют и другие значения, см. Борн. Макс Борн Max Born … Википедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    Фотон Символ: иногда Излученные фотоны в когерентном луче лазера. Состав: Семья … Википедия

    У этого термина существуют и другие значения, см. Масса (значения). Масса Размерность M Единицы измерения СИ кг … Википедия

    CROCUS Ядерный реактор это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в … Википедия

Книги

  • Гидравлика. Учебник и практикум для академического бакалавриата , Кудинов В.А.. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…
  • Гидравлика 4-е изд., пер. и доп. Учебник и практикум для академического бакалавриата , Эдуард Михайлович Карташов. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…

Для количественного описания различных свойств физических объектов, физических систем, явлений или процессов в РМГ 29-99 (Рекомендации по межгосударственной стандартизации) введено понятие величины .

Величина - это свойство, которое может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно.

Величины делятся на идеальные иреальные.

Идеальные величины главным образом относятся к области математики и являются обобщением (моделью) конкретных реальных понятий. Они вычисляются тем или иным способом.

Реальные величины делятся на физические и нефизические .

Физическая величина в общем случае может быть определена как величина, свойственная некоторым материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К физической величине можно отнести массу, температуру, время, длину, напряжение, давление, скорость и др.

К нефизическим относятся величины, присущие общественным (нефизическим) наукам - философии, социологии, экономике и т.д. Нефизические величины, для которых единица измерения не может быть введена, могут быть только оценены. Примеры нефизических величин: оценка учащихся по 5-ти балльной шкале, число сотрудников в организации, цена товара, ставка налога и др. Оценивание нефизических величин не входит в задачи теоретической метрологии.

Физическая величина – одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них (качественная сторона определяет «род» величины, например, электрическое сопротивление как общее свойство проводников электричества, а количественная – ее «размер», например, сопротивление конкретного проводника).

Различают физические величины измеряемые и оцениваемые .

Измеряемые физические величины можно выразить количественно в виде определенного числа установленных единиц измерения.

Оцениваемые физические величины – величины, для которых по каким-либо причинам не может быть введена единица измерения, и они могут быть только оценены.

Оценивание – операция приписывания данной физической величине определенного числа принятых для нее единиц, проведенная по установленным правилам. Оценивание осуществляется при помощи шкал .

Для выражения количественного содержания свойства конкретного объекта употребляется понятие «размер физической величины», оценку которого устанавливают в процессе измерения.

Размер физической величины (размер величины) – это количественная определённость физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.

Например, каждый человек обладает определённым ростом, массой, вследствие чего людей можно различать по их росту или массе, т.е. по размерам интересующих нас физических величин.

Размер является объективной количественной характеристикой, не зависящей от выбора единиц измерений.

Например, если мы запишем 3,5 кг и 3500 г, то это два варианта представления одного и того же размера. Каждый из них является значением физической величины (в данном случае – массы).

Значение физической величины – это выражение размера физической величины в виде некоторого числа принятых для неё единиц.

Значение физической величины Q получают в результате измерения и вычисляют в соответствии с основным уравнением измерения :

Q = q [Q], (1)

где q – отвлечённое число, называемое числовым значением , а [Q] – размер единицы измерения данной физической величины.

Числовое значение физической величины – отвлеченное число, выражающее отношение значения величины к соответствующей единице данной физической величины.

Числовое значение результата измерения будет зависеть от выбора единицы физической величины. (Пример про удава из мультфильма).

Цифры 3,5 и 3500 – это отвлечённые числа, входящие в значение физической величины и указывающие на числовые значения физической величины. В приведенном примере масса объекта приводится числами – 3,5 и 3500, а единицами являются килограмм (кг) и грамм (г).

Значение величины не следует смешивать с размером . Размер физической величины данного объекта существует реально и независимо от того, знаем мы его или нет, выражаем его в каких-либо единицах или нет. Значение же физической величины появляется только после того, как размер величины данного объекта выражен с помощью какой-либо единицы.

Единица физической величины - физическая величина фиксированного размера, которой условно присвоено числовое значение, равное единице. Она применяется для количественного выражения однородных физических величин.

Однородные физические величины – это физические величины, которые выражаются в одинаковых единицах и могут сравниваться друг с другом (например, длина и диаметр детали).

Физические величины объединены в систему .

Система физических величин (система величин) - это совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции этих независимых величин.

Все величины, входящие в систему физических величин, делят на основные и производные .

Основная физическая величина - физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

Формализованным отражением качественного различия физических величин является их размерность.

Размерность физической величины - это выражение, отражающее связь данной величины с физическими величинами, принятыми в данной системе единиц за основные с коэффициентом пропорциональности, равным единице.

Размерность физической величины обозначается символом dim (от лат. dimension – размерность).

Размерность основных физических величин обозначается соответствующими заглавными буквами:

длина - dim l = L

масса - dim m = М

время - dim t = Т

сила электрического тока – dim i= I

термодинамическая температура – dim Q = Q

количество вещества - dim n = N

сила света – dim j = J

Размерность dim x любой производной физической величины х определяют через уравнение связи между величинами. Она имеет вид произведения основных величин, возведённых в соответствующие степени:

dim x = L a М b Т g I e Q i N v J t , (2)

где L, М, Т, I … - условные обозначения основных величин данной системы;

a, b, g, e … - показатели размерности, каждый из которых может быть положительным или отрицательным, целым или дробным числом, а также нулём.

Показатель размерности - показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины.

По наличию размерности физические величины делятся на размерные и безразмерные.

Размерная физическая величина – физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю.

Безразмерная физическая величина – все показатели размерности равны нулю. Они не имеют единиц измерения, то есть ни в чем не измеряются (Например, коэффициент трения).

Шкалы измерений

Оценивание и измерение физических величин осуществляется при помощи различных шкал.

Шкала измерений - это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения.

Поясним это понятие на примере температурных шкал. В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) - температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия).

Различают следующие основные типы шкал измерений : наименований, порядка, разностей (интервалов), отношений и абсолютные шкалы.

Шкалы наименований отражают качественные свойства. Элементы этих шкал характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойств.

Примером таких шкал является шкала классификации (оценки) цвета объектов по наименованиям (красный, оранжевый, желтый, зеленый и т.д.), опирающаяся на стандартизованные атласы цветов, систематизированные по сходству. Измерения в шкале цветов выполняются путем сравнения при определенном освещении образцов цвета из атласа с цветом исследуемого объекта и установления равенства (эквивалентности) их цветов.

В шкалах наименований отсутствуют такие понятия, как «нуль», «единица измерений», «размерность», «больше» или «меньше». Шкала наименований может состоять из любых знаков (число, наименование, другие условные обозначения). Цифры или числа такой шкалы – не более чем кодовые знаки.

Шкала наименование позволяет составлять классификации, идентифицировать и различать объекты.

Шкала порядка (шкала рангов) - упорядочивает объекты относительно какого-либо их свойства в порядке убывания или возрастания.

Полученный при этом упорядоченный ряд называют ранжированным . Он может дать ответы на вопросы: «Что больше или меньше?», «Что хуже или лучше?». Более подробную информацию - на сколько больше или меньше, во сколько раз лучше или хуже – шкала порядка дать не может.

Примером шкалы порядка является построенная по росту группа людей, где каждый последующий ниже всех предыдущих; балльная оценка знаний; место спортсмена; шкалы баллов ветра (шкала Бофорта) и землетрясений (шкала Рихтера); шкалы чисел твердости (шкалы Роквелла, Бринеля, Виккерса) и т.д.

В шкалах порядка может быть или отсутствовать нулевой элемент (например, ранжированные классы точности приборов (0,1 и 2) ).

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии.

Шкала разностей (интервалов) содержит разность значений физической величины. Для этих шкал имеют смысл соотношения эквивалентности, порядка, суммирования интервалов (разностей) между количественными проявлениями свойств.

Данная шкала состоит из одинаковых интервалов, имеет условную (принятую по соглашению) единицу измерения и произвольно выбранное начало отсчета - нуль.

Понравилась статья? Поделитесь ей