Контакты

Субстратом для процесса дыхания является атф. Субстраты дыхания

Дыхание - это окисление органического вещества, являющегося субстратом дыхания. Субстратами для дыхания служат углеводы, жиры и белки.

Углеводы . При наличии углеводов большинство клеток использует в качестве субстратов именно их. Полисахариды (крахмал у растений и гликоген у животных и грибов) вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов.

Липиды (жиры или масла) . Липиды составляют «главный резерв» и пускаются в дело в основном тогда, когда запас углеводов исчерпан. Предварительно они должны быть гидролизованы до глицерола и жирных кислот. Жирные кислоты богаты энергией и некоторые клетки, например мышечные, в норме получают именно от них часть необходимой им энергии.

Белки . Поскольку белки выполняют ряд других важных функций, они используются для производства энергии лишь после того, как будут израсходованы все запасы углеводов и жиров, например при длительном голодании (разд. 8.9.3). Белки предварительно гидролизуются до аминокислот, а аминокислоты дезаминируются (лишаются своих аминогрупп). Образовавшаяся в результате дезаминирования кислота вовлекается в цикл Кребса или превращается сначала в жирную кислоту, чтобы затем подвергнуться окислению.

Главную роль в клеточном дыхании играют два типа реакций - окисление и декарбоксилирование.

Окисление

В клетке происходят окислительные реакции трех типов.
1. ОКИСЛЕНИЕ МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ .

2. ОТЩЕПЛЕНИЕ ВОДОРОДА (ДЕГИДРИРОВАНИЕ) . При аэробном дыхании окисление глюкозы происходит путем последовательных реакций дегидрирования. Отщепляемый при каждом дегидрировании водород используется для восстановления кофермента, называемого в этом случае переносчиком водорода:


Большая часть этих реакций происходит в митохондриях, где переносчиком водорода служит обычно кофермент НАД (никотинамидадениндинуклеотид):


НАД*Н (восстановленный НАД ) затем вновь подвергается окислению с высвобождением энергии. Ферменты, катализирующие реакции дегидрирования, называются дегидрогеназами. В ряде последовательных реакций дегидрирования весь отщепляемый от глюкозы водород передается переносчикам водорода. Этот водород окисляется затем кислородом до воды, а высвобождаемая при этом энергия используется для синтеза АТФ. Феномен выделения энергии при окислении (горении) водорода можно наблюдать, если поднести горящую свечку к пробирке с водородом. При этом раздастся легкий короткий хлопок, вроде миниатюрного взрыва. В клетке выделяется такое же количество энергии, но выделяется оно в ряде окислительно-восстановительных реакций при переходе водорода от одного переносчика к другому по так называемой дыхательной цепи.

3. ПЕРЕНОС ЭЛЕКТРОНОВ . Это происходит, например, при переходе одной ионной формы железа (Fe2+) в другую (Fe3+)

Электроны могут передаваться от одного соединения к другому, как водород в реакциях описанных выше. Соединения, между которыми совершается этот перенос, называются переносчиками электронов. Протекает этот процесс в митохондриях.


Декарбоксилирование

Декарбоксилирование - это отщепление углерода от данного соединения с образованием СО2. В молекуле глюкозы, помимо водорода и кислорода, содержится еще шесть атомов углерода. Поскольку для описанных выше реакций нужен только водород, углерод удаляется в реакциях декарбоксилирования. Образующийся при этом диоксид углерода представляет собой «побочный продукт» аэробного дыхания.

Дыхание растений
План лекции

1. Общая характеристика процесса дыхания.

2. Строение и функции митохондрий.

3. Структура и функции аденилатной системы.

4. Субстраты дыхания и дыхательный коэффициент.

5. Пути дыхательного обмена

1. Общая характеристика процесса дыхания.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается, - это дыхание и брожение .

Дыхание – это окислительно-восстановительный процесс в результате которого углеводы окисляются до углекислого газа, кислород восстанавливается до воды, а выделившаяся энергия преобразуется в энергию связей АТФ.

Брожение – это анаэробный процесс распада сложных органических соединений на более простые органические вещества, также сопровождаемый выделением энергии. При брожении степень окисления соединений, принимающих в нем участие, не меняется. В случае дыхания акцептором электрона служит кислород, в случае брожения – органические соединения.

Чаще всего реакции дыхательного обмена рассматривают на примере окислительного распада углеводов.

Суммарное уравнение реакции окисления углеводов при дыхании можно представить следующим образом:

С6 Н12 О6 + 6О2 → 6СО2 + 6 Н2 О + ~ 2874 кДж

2. Строение и функции митохондрий.

Митохондрии – цитоплазматические органеллы, которые являются центрами внутриклеточного окисления (дыхания). Они содержат ферменты цикла Кребса, дыхательной цепи переноса электронов, окислительного фосфорилирования и многие другие.

Митохондрии на 2/3 состоят из белка и на 1/3 из липидов, среди которых половина приходится на фосфолипиды.

Функции митохондрий:

1. Осуществляют химические реакции, являющиеся источником электронов.

2. Переносят электроны по цепи компонентов, синтезирующих АТФ.

3. Катализируют синтетические реакции, идущие с использованием энергии АТФ.

4. Регулируют биохимические процессы в цитоплазме.

3. Структура и функции аденилатной системы.

Обмен веществ, происходящий в живых организмах, состоит из множества реакций, идущих как с потреблением энергии, так и с ее выделением. В некоторых случаях эти реакции взаимосвязаны. Однако чаще всего процессы, в которых энергия выделяется, отделены в пространстве и во времени от тех, в которых она потребляется. В связи с этим у всех живых организмов выработались механизмы хранения энергии в форме соединений, обладающих макроэргическими (богатыми энергией) связями. Центральное место в энергообмене клеток всех типов принадлежит аденилатной системе. Эта система включает аденозинтрифосфорную кислоту (АТФ), аденозиндифосфорную кислоту (АДФ), - 5-монофосфат аденозина (АМФ), неорганический фосфат (Р i ) и ионы магния.

4. Субстраты дыхания и дыхательный коэффициент

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении этого вопроса большое значение имеет определение дыхательного коэффициента.

Дыхательный коэффициент (ДК) – это объемное или молярное отношение углекислого газа (СО2), выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени кислороду (О2). Дыхательный коэффициент показывает, за счет каких продуктов осуществляется дыхание.

В качестве дыхательного материала в растениях, кроме углеводов, могут использоваться жиры, белки и аминокислоты, органические кислоты.

5. Пути дыхательного обмена

Необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена.

Существуют два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) Гликолиз + цикл Кребса (гликолитический)

2) пентозофосфатный (апотомический)

Гликолитический путь дыхательного обмена

Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз.

Первая фаза – анаэробная (гликолиз), локализована в цитоплазме.

Вторая фаза – аэробная , локализована в митохондриях.

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты (ПВК):

С6 Н12 О6 → 2 С3 Н4 О3 + 2Н2

Вторая фаза дыхания – аэробная - требует присутствия кислорода. В эту фазу вступает пировиноградная кислота. Общее уравнение этого процесса можно представить так:

2ПВК + 5 О2 + Н2 О → 6СО2 + 5Н2 О

Энергетический баланс процесса дыхания.

В результате гликолиза глюкоза распадается на две молекулы ПВК и накапливаются две молекулы АТФ, также образуются две молекулы НАДН2, вступая в ЭТЦ дыхания они высвобождают шесть молекул АТФ. В аэробной фазе дыхания образуется 30 молекул АТФ.

Таким образом: 2АТФ + 6 АТФ + 30 АТФ = 38 АТФ

Пентозофосфатный путь дыхательного обмена

Существует еще не менее распространенный путь окисления глюкозы – пентозофосфатный. Это анаэробное окисление глюкозы, которое сопровождается выделением углекислого газа СО2 и образованием молекул НАДФН2 .

Цикл состоит из 12 реакций, в которых участвуют только фосфорные эфиры сахаров.

Вопрос о веществах, используемых в процессе дыхания, издавна занимал фи­зиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсив­ность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении данного вопроса большое значение имеет определение дыхательного коэффи­циента. Дыхательный коэффициент (ДК) - это объемное или молярное отно­шение СО 2 , выделившегося в процессе дыхания, к поглощенному за этот же про­межуток времени О 2 . При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то про­цесс идет согласно уравнению С 6 Н 12 О 6 +6О 2 → 6СО 2 + 6Н 2 О. В этом случае ДК равен единице: 6СО 2 /6О 2 = 1. Однако если разложению в процессе дыхания под­вергаются более окисленные соединения, например органические кислоты, по­глощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше едини­цы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэф­фициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке угле­водов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного пита­тельного вещества содержатся жиры или белки. В этом случае дыхательный ко­эффициент становится меньше единицы. При использовании в качестве дыха­тельного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Существуют две основные системы и два основных пути превращения дыхатель­ного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); 2) пентозофосфатный (апотомтеский). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Расти­тельный организм не имеет приспособлений к регуляции температуры, поэтому

В процесс дыхания осуществляется при температуре от -50 до +50°С. Нет при­способлений у растений и к поддержанию равномерного распределения кисло­рода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разно­образных путей дыхательного обмена и к еще большему разнообразию фер­ментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути ды­хательного обмена приводит к глубоким изменениям во всем метаболизме рас­тений.

Дыхательным коэффициентом называется отно­шение выделенной при дыхании углекислоты к количеству погло­щенного кислорода (СО2/О2). В случае классического дыхания, когда окисляются углеводы СбН^О^ и в качестве конечных про­дуктов образуются только СО2 и Н2О, дыхательный коэффициент равен единице. Однако так бывает далеко не всегда, в ряде случаев он изменяется в сторону увеличения или уменьшения, почему и считают, что он является показателем продуктивности дыхания. Изменчивость величины дыхательного коэффициента зависит от субстрата дыхания (окисляемого вещества) и от продук­тов дыхания (полного или неполного окисления).

При использовании в процессе дыхания вместо углеводов жи­ров, которые менее окислены, чем углеводы, на их окисление будет использоваться больше кислорода - в таком случае дыха­тельный коэффициент будет уменьшаться (до величины 0,6 - 0,7). Этим объясняется большая калорийность жиров по сравнению с углеводами.

Если же при дыхании будут окисляться органические кислоты (вещества более окисленные по сравнению с углеводами), то кис­лорода будет использоваться меньше, чем выделяться углекислоты, и дыхательный коэффициент возрастает до величины больше еди­ницы. Самым высоким (равным 4) он будет при дыхании за счет.щавелевой кислоты, которая окисляется по уравнению

2 С2Н2О4 + 02 4С02 + 2Н20.

Выше было упомянуто, что при полном окислении субстрата (углевода) до углекислого газа и воды дыхательный коэффициент равен единице. Но при неполном окислении и частичном образо­вании продуктов полураспада часть углерода будет оставаться в растении, не образуя углекислого газа; кислорода будет поглощать­ся больше, и дыхательный коэффициент опустится до величины меньше единицы.

Таким образом, определяя дыхательный коэффициент, можно получить представление о качественной направленности дыхания, о субстратах и продуктах этого процесса.

55 Зависимость дыхания от экологических факторов.

Дыхание и температура

Как и другие физиологические процессы, интенсивность дыха­ния зависит от ряда экологических факторов, причем сильнее и

определеннее всего выражена температурная зависимость. Это обусловлено тем, что из всех физиологических процессов дыхание является наиболее "химическим", ферментативным. Связь же ак- , тивности ферментов с уровнем температуры неоспорима. Дыхание подчиняется правилу Вант-Гоффа и имеет температурный коэф­фициент (2ю 1,9 - 2,5.

Температурная зависимость дыхания выражается одновершин­ной кривой (биологической) с тремя кардинальными точками. Точ­ка (зона) минимума различна у разных растений. У холодоустойчивых она определяется температурой замерзания рас­тительной ткани, так что у незамерзающих частей хвойных ды­хание обнаруживается при температуре до -25 °С. У теплолюбивых растений точка минимума лежит выше нуля и оп­ределяется температурой отмирания растений. Точка (зона) опти­мума дыхания лежит в интервале от 25 до 35 °С, т. е. несколько выше, чем оптимум для фотосинтеза. У различных по степени теплолюбивости растений ее положение также несколько изменя­ется: она лежит выше у теплолюбивых и ниже у холодоустойчивых. Максимальная температура дыхания находится в интервале от 45 до 53 °С.> Эта точка определяется отмиранием клеток и разруше­нием цитоплазмы, ибо клетка дышит, пока жива. Таким образом, температурная кривая дыхания подобна кривой фотосинтеза, но не повторяет ее. Различие между ними заключается в том, что- кривая дыхания охватывает более широкий температурный диапа­зон, чем кривая фотосинтеза, а оптимум ее несколько смещен в сторону повышенйой температуры.

Сильное действие на интенсивность дыхания оказывают коле­бания температуры. Резкие переходы ее от высокой к низкой и обратно значительно усиливают дыхание, что было, установлено* еще В. И. Палладиным в 1899 г.

При колебаниях температуры происходят не только количест­венные, но и качественные изменения дыхания, т. е. изменение путей окисления органического вещества, однако в настоящее вре­мя они исследованьг слабо, поэтому здесь не излагаются.

Дыхание и состав атмосферы

На интенсивность дыхания оказывает влияние состав атмосфе­ры, особенно количество в ней кислорода и углекислого газа. Обыч­ное содержание кислорода в атмосфере (21 %) для растений можно считать избыточным, так кай^для многих из них значительное его снижение не влияет на дыхание. Только при 4 - 5 % кислорода начинается изменение интенсивности дыхания в сторону ее умень­шения. Правда, так ведут себя не все растения, у некоторых из них (например салата) дыхание понижается уже при 16 % кис­лорода. В связи с раздельным дыханием частей растения имеет значение отношение органов и тканей к кислороду. Оно не оди­наково: более устойчивы к недостатку кислорода внутренние ткани растения и массивные органы с плотными покровными тканями. Для органов с рыхлыми тканями и для поверхностных тканей необходимо высокое содержание кислорода. Необходимо отметить, что по системе межклетников и воздухоносных полостей некоторые органы растения, например расположенные под Ьодой корни, спо­собны усваивать атмосферный кислород. Это можно наблюдать у болотных и полупогруженных в воду растений.

Недостаток и даже полное отсутствие кислорода в среде не приводит растение к быстрой гибели, как это наблюдается у жи­вотных организмов. В этих неблагоприятных условиях происходят качественные изменения дыхания - переход на анаэробное ды­хание - гликолиз и далее брожение. Но в таких условиях высшие растения, которые относятся к аэробным организмам, долго суще­ствовать не могут. При анаэробном дыхании и брожении проис­ходит быстрое истощение растения, так как при затрате большого количества углеводов энергетический выход, очень мал. При бро­жении окисление органического вещества не идет до конца. Наряду с образованием небольшого количества углекислоты появляются продукты полураспада - спирты, кислоты, альдегиды, которые оказывают на растения отравляющее действие.

Углекислота, присутствующая в незначительном количестве в атмосфере, не влияет на дыхание, но если она накапливается до высокой концентрации (в замкнутых пространствах), то может угнетать дыхание. Практически вредное действие ее избытка на дыхание не обнаруживается, что дает основание использовать эту закономерность для хранения особо ценных плодов. При таком способе хранения плоды помещают в герметичные камеры, куда закачивают углекислоту. Избыточное содержание ее в атмосфере- уменьшает дыхание плодов, сохраняя тем самым в них питатель­ные вещества. К тому же в атмосфере углекислоты подавляется жизнедеятельность микроорганизмов, которые, поселяясь на повер­хности, вызывают загнивание плодов. Дыхание и свет Действие света на дыхание зеленых органов растения - листьев и стеблей - неоднократно подвергалось исследованиям, однако до хсих пор однозначных результатов не получено. Сложность заклю­чается в том, что при освещении зеленой части растения одно­временно могут протекать противоположные процессы - дыхание и фотосинтез; расчленение их очень сложно, да и вряд ли полно­стью возможно. В связи с этим укрепилось мнение, что свет может оказывать на дыхание разных растительных объектов неодинаковое действие, т. е. подавлять, стимулировать или же совершенно не изменять дыхание. Однако определенно установлено, что колебания освещенности (свет - темнота) служат раздражителем, стимулируя дыхание. При этом более значительное действие оказывает коротковолновая часть спектра - фиолетовые и ультрафиолетовые лучи. Это дает возможность считать, что влияние света на дыхание не тепловое, а скорее химическое. Впрочем, природа этого действия до конца не выяснена.

Дыхание и содержание воды в тканях

Вода принимает участие в процессе дыхания, поэтому вполне понятно, что ее содержание в дышащем органе (т. е. в ткани) также оказывает влияние на интенсивность дыхания. Действие ее на дыхание органов растения, находящихся в различном состоянии, неодинаково. Так, покоящиеся части растения (семена) усиливают дыхание при повышении в них содержания воды. При этом они изменяют свою реакцию на температуру, что еще сильнее стиму­лирует дыхание, вызывая перегревание переувлажненных семян. Это объясняет, почему влажные семена способны не только пере­греваться, но и самовозгораться, и обусловливает определенные требования к хранению семян. Иначе реагируют на изменения содержания воды вегетирующие органы, находящиеся в состоянии активной жизнедеятельности. У них усиление дыхания происходит при обезвоживании тканей, что приводит к значительному и бес­полезному расходу питательных веществ и быстрому истощению растения. При значительном обезвоживании и уменьшении пита­тельных веществ дыхание снова может уменьшиться. Влияние раздражителей на дыхание Как уже было отмечено, колебания температуры и освещения стимулируют дыхание, действуя как раздражители. Число, агентов, влияющих подобным образом, велико. Их можно разделить на раздражители физические и химические. К первой группе, кроме температуры и света, относятся механические воздействия (разре­зание органов, разрыв тканей) и различного вида облучения. К химическим раздражителям относят различные химические, веще­ства - клеточные яды, спирты, наркотики.

Для действия всех раздражителей характерно то, что они вы­зывают двухфазную реакцию. При малых дозах они обычно сти­мулируют дыхание, причем эффект достигает максимума при определенной для каждого объекта дозе раздражителя. При пре­вышении дозы выше оптимальной стимуляция переходит в подав­ление, которое выражено тем сильнее, чем больше доза раздра­жителя.

Субстраты дыхания

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И. П. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент (ДК) -- это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени О2. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыханий используются углеводы, то процесс идет согласно уравнению С6Н12С6 + 6О2 = 6СО2 + 6Н2О. В этом случае ДК равен единице.

Однако если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше единицы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэффициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке углеводов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержатся жиры или белки. В этом случае дыхательный коэффициент становится меньше единицы. При использовании в качестве дыхательного материала жиров происходит их расщепление до глицерина и жирных кислот.

Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Анаэробное дыхание семян злаковых

Анаэробное окисление углеводов идёт по пути гликолиза. Гликолиз - это анаэробный процесс, приводящий к распаду одной молекулы глюкозы на две молекулы пировиноградной кислоты. При этом высвобождается энергия, которую организм аккумулирует в форме АТФ. Реакции гликолиза протекают в цитозоле, без потребления кислорода.

Полная цепь реакций гликолиза была выявлена трудами Л.А. Иванова, С.П. Костычева, А.Н. Лебедева, Г. Эмбдена, Я.О. Парнаса и О. Мейергофа к середине 30-х годов ХХ века. Гликолиз протекает в две стадии.

Первая стадия - подготовительная, или собирательная. Различные гексозы вовлекаются в гликолиз, главным образом, глюкоза, а также фруктоза и манноза. При этом инертные молекулы гексоз активируются, фосфорилируются за счёт АТФ, превращаются в глюкозо-6-фосфат. Этап заканчивается образованием глицеральдегид-3-фосфата.

Вторая стадия - окислительная. Глицеральдегид-3-фосфат окисляется до пировиноградной кислоты (пируват). Энергия окисления накапливается в АТФ, образуются восстановительные эквиваленты НАД Н2.

Суммарное уравнение гликолиза:

С6Н12О6 + 2 НАД+ + 2 Н3РО4 + 2 АДФ > 2 СН3 - СО - СООН + 2 АТФ + 2 НАД Н2 + 2 Н2О.

В дальнейшем пировиноградная кислота в зависимости от условий и специфических особенностей данного организма может подвергаться различным превращениям.

Роль гликолиза у семян злаковых

Роль гликолиза как анаэробной фазы дыхания заключается в извлечении из углеводов свободной энергии и аккумуляции её в легко используемой форме молекулах АТФ, а также в образовании многих высоко реакционноспособных соединений. Они используются в разнообразных метаболических реакциях. Значение гликолиза особенно велико в тканях и органах, где ограничен доступ кислорода или возможно внезапное и резкое возрастание скорости потребления АТФ.

Понравилась статья? Поделитесь ей