Контакты

Сложное движение точки. Пример решения задачи

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

Введем единичный вектор τ, связанный с движущейся точкой A и направленный по касательной к траектории в сторону возрастания дуговой координаты (рис. 1.6). Очевидно, что τ - переменный вектор: он зависит от l. Вектор скорости v точки A направлен по касательной к траектории, поэтому его можно представить так

где v τ =dl/dt - проекция вектора v на направление вектора τ, причем v τ - величина алгебраическая. Кроме того, |v τ |=|v|=v.

Ускорение точки

Продифференцируем (1.22) по времени

(1.23)

Преобразуем последний член этого выражения

(1.24)

Определим приращение вектора τ на dl (рис. 1.7).


Как видно из рис. 1.7, угол , откуда , причем при .

Введя единичный вектор n нормали к траектории в точке 1, направленный к центру кривизны, запишем последнее равенство в векторном виде

Подставим (1.23) в (1.24) и полученное выражение в (1.22). В результате найдем

(1.26)

Здесь первое слагаемое называют тангенциальным a τ , второе - нормальным a n .

Таким образом, полное ускорение a точки может быть представлено как геометрическая сумма тангенциального и нормального ускорений.

Модуль полного ускорения точки

(1.27)

Направлено оно в сторону вогнутости траектории под углом α к вектору скорости, причем .

Если угол α острый, то tgα>0, следовательно, dv/dt>0, так как v 2 /R>0 всегда.

В данном случае величина скорости возрастает с течением времени - движение называют ускоренным (рис. 1.8).

В том случае, когда скорость с течением времени уменьшается по величине, движение называется замедленным (рис. 1.9).

Если же угол α=90°, tgα=∞, то есть dv/dt=0. В этом случае скорость с течением времени по величине не изменяется, а полное ускорение будет равно центростремительному

(1.28)

В частности, полное ускорение равномерного вращательного движения (R=const, v=const) есть центростремительное ускорение, по величине равное a n =v 2 /R и направленное все время к центру.

При прямолинейном движении, наоборот, полное ускорение тела равно тангенциальному. В данном случае a n =0, так как прямолинейную траекторию можно считать окружностью бесконечно большого радиуса, а при R→∞; v 2 /R=0; a n =0; a=a τ .

Механическим движением называют изменение с течением вре­мени положения в пространстве точек и тел относительно какого-либо основного тела, с которым скреплена система отсчета. Кинема­тика изучает механическое движение точек и тел независимо от сил, вызывающих эти движения. Всякое движение, как и покой, относи­тельно и зависит от выбора системы отсчета.

Траекторией точки называют непрерывную линию, описывае мую движущейся точкой. Если траектория - прямая линия, то движе­ние точки называют прямолинейным, а если - кривая, то - криволиней­ным. Если траектория - плоская, то движение точки называют плоским.

Движение точки или тела, считается заданным или известным, если для каждого момента времени (t) можно указать положение точ­ки или тела относительно выбранной системы координат.

Положение точки в пространстве определяется заданием:

а) траектории точки;

б) начала О 1 отсчета расстояния по траектории (Рису­нок 11): s = О 1 М - криволиней­ная координата точки М;

в) направления положи­ тельного отсчета расстояний s;

г) уравнения или закона движения точки по траектории: S = s(t)

Скорость точки. Если точ­ка за равные промежутки време­ни проходит равные отрезки пути, то ее движение называют равномерным. Скорость равно­мерного движения измеряется отношением пути з, пройденно­го точкой за некоторый проме­жуток времени, к величине это­го промежутка времени: v = s/1. Если точка за равные промежут­ки времени проходит неравные пути, то ее движение называют неравномерным. Скорость в этом случае также переменна и являет­ся функцией времени: v = v(t). Рассмотрим точку А, которая перемещается по заданной тра­ектории по некоторому закону s = s(t) (Рисунок 12):

За промежуток времени t т. А переместилась в положение А 1 по дуге АА. Если промежуток времени Δt мал, то дугу АА 1 можно заменить хордой и найти в первом приближении величину средней скорости движения точки v cp = Ds/Dt. Средняя скорость направлена по хорде от т. А к т. А 1 .

Истинная скорость точки направлена по касательной к траекто­рии, а ее алгебраическая величина определяется первой производной пути по времени:

v = limΔs/Δt = ds/dt

Размерность скорости точки: (v) = длима/время, например, м/с. Если точка движется в сторону увеличения криволинейной координаты s, то ds > 0, и следовательно, v > 0, а в противном случае ds < 0 и v < 0.

Ускорение точки. Изменение скорости в единицу времени опреде­ляется ускорением. Рассмотрим движение точки А по криволинейной траектории за время Δt из положения A в положение A 1 . В положении A точка имела скорость v , а в положении A 1 - скорость v 1 (Рисунок 13). т.е. скорость точки изменилась по величине и направлению. Геометрическую разность, скоростей Δv найдем, построив из точки A вектор v 1.


Ускорением точки называют вектора ", равный первой производной от вектора скорости точки по времени:

Найденный вектор ускорения а может быть разложен на две взаимно-перпендикулярные составляющие но касательной и нормали к траек­тории движения . Касательное ускорение а 1 совпадает по на­правлению со скоростью при ускоренном движении или противополож­но ей при замененном движении. Оно характеризует изменение величи-ны скорости и равно производной от величины скорости по времени

Вектор нормального ускорения а направлен по нормали (пер­пендикуляру) к кривой в сторону вогнутости траектории, а модуль его равен отношению квадрата величины скорости точки к радиусу кри­визны траектории в рассматриваемой точке.

Нормальное ускорение характеризует изменение скорости по
направлению.

Величина полного ускорения: , м/с 2

Виды движения точки в зависимости от ускорения.

Равномерное прямолинейное движение (движение по инерции) характеризуется тем, что скорость движения постоянна, а радиус кри­визны траектории равен бесконечности.

То есть, r = ¥, v = const, тогда ; и поэтому . Итак, при движении точки по инерции ее ускорение равно нулю.

Прямолинейное неравномерное движение. Радиус кривизны траектории r = ¥, а n = 0, поэтому и а = а t и а = а t = dv/dt.

Скорость точки.

Перейдем к решению второй основной задачи кинематики точки - определению скорости и ускорения по уже заданному векторным, координатным или естественным способом движению.

1. Скоростью точки называется векторная величина, характеризующая быстроту и направление перемещения точки . В системе СИ скорость измеряется в м/с.

a) Определение скорости при векторном способе задания движения .

Пусть движение точки задано векторным способом, т.е. известно векторное уравнение (2.1): .

Рис. 2.6. К определению скорости точки

Пусть за время Dt радиус-вектор точки М изменится на величину . Тогда средней скоростью точки М за время Dt называется векторная величина

Вспоминая определение производной, заключаем:

Здесь и в дальнейшем знаком будем обозначать дифференцирование по времени. При стремлении Dt к нулю вектор , а, следовательно, и вектор , поворачиваются вокруг точки М и в пределе совпадают с касательной к траектории в этой точке. Таким образом, вектор скорости равен первой производной от радиус-вектора по времени и всегда направлен по касательной к траектории движения точки.

б) Скорость точки при координатном способе задания движения.

Выведем формулы для определения скорости при координатном способе задания движения. В соответствии с выражением (2.5), имеем:

Так как производные от постоянных по величине и направлению единичных векторов равны нулю, получаем

Вектор , как и любой вектор, может быть выражен через свои проекции:

Сравнивая выражения (2.6) и (2.7) видим, что производные координат по времени имеют вполне определенный геометрический смысл - они являются проекциями вектора скорости на координатные оси. Зная проекции, легко вычислить модуль и направление вектора скорости (рис. 2.7):

Рис. 2.7.К определению величины и направления скорости

в) Определение скорости при естественном способе задания движения.

Рис. 2.8. Cкорость точки при естественном способе задания движения

Согласно (2.4) ,

где - единичный вектор касательной. Таким образом,

Величина V =dS/dt называется алгебраической скоростью. Если dS/dt>0 , то функция S = S(t) возрастает и точка движется в сторону увеличения дуговой координаты S, т.е. точка движется в положительном направлении Если же dS/dt<0 , то точка движется в противоположном направлении.

2. Ускорение точки

Ускорением называется векторная величина, характеризующая быстроту изменения модуля и направления вектора скорости . В системе СИ ускорение измеряется в м/с 2 .


a) Определение ускорения при векторном способе задания движения .

Пусть точка М в момент времени t находится в положении М(t) и имеет скорость V(t), а в момент времени t + Dt находится в положении М(t + Dt) и имеет скорость V(t + Dt) (см. рис. 2.9).

Рис. 2.9. Ускорения точки при векторном способе задания движения

Средним ускорением за промежуток времени Dt называется отношение изменения скорости к Dt , т.е.

Предел при Dt ® 0 называется мгновенным (или просто ускорением) точки М в момент времени t

Согласно (2.11), ускорение при векторном способе задания движения равно векторной производной от скорости по времени.

б). Ускорения при координатном способе задания движения .

Подставляя (2.6) в (2.11) и дифференцируя произведения в скобках, находим:

Учитывая, что производные от единичных векторов равны нулю, получаем:

Вектор может быть выражен через свои проекции:

Сравнение (2.12) и (2.13) показывает, что вторые производные от координат по времени имеют вполне определенный геометрический смысл: они равны проекциям полного ускорения на координатные оси, т.e.

Зная проекции, легко вычислить модуль полного ускорения и направляющие косинусы, определяющие его направление:

в). Ускорение точки при естественном способе задания движения

Приведем некоторые сведения из дифференциальной геометрии, необходимые для определения ускорения при естественном способе задания движения.

Пусть точка М движется по некоторой пространственной кривой. С каждой точкой этой кривой связаны три взаимно ортогональные направления (касательная, нормаль и бинормаль), однозначно характеризующие пространственную ориентацию бесконечно малого элемента кривой вблизи данной точки. Ниже приводится описание процесса определения указанных направлений.

Для того чтобы провести касательную к кривой в точке М , проведем через нее и близлежащую точку М 1 секущую ММ 1 .

Рис. 2.10. Определение касательной к траектории движения точки

Касательная к кривой в точке М определяется как предельное положение секущей ММ 1 при стремлении точки М 1 к точке М (рис. 2.10). Единичный вектор касательной принято обозначать греческой буквой .

Проведем единичные векторы касательных к траектории в точках М и М 1 . Перенесем вектор в точку М (рис. 2.11) и образуем плоскость, проходящую через эту точку и векторы и . Повторяя процесс образования аналогичных плоскостей при стремлении точки М 1 к точке М , мы получаем в пределе плоскость, называемую соприкасающейся плоскостью.

Рис. 2.11. Определение соприкасающейся плоскости

Очевидно, что для плоской кривой соприкасающаяся плоскость совпадает с плоскостью, в которой лежит сама эта кривая. Плоскость, проходящая через точку М и перпендикулярная касательной в этой точке, называется нормальной плоскостью. Пересечение соприкасающейся и нормальной плоскостей образует прямую, называемую главной нормалью (рис. 2.12).

Понравилась статья? Поделитесь ей