Контакты

С точки зрения космологии вселенная представляет собой. Космология - это раздел астрономии

На вопрос Не буду задавать вопрос, что есть вселенная, а... заданный автором электросварщик лучший ответ это Говорят Вселенная безгранична. Мне более логичным представляется другой вариант - с момента Большого Взрыва Вселенная расширяется из одной точки во все стороны, а границами можно считать самые отдаленные ее стороны. Как они выглядят? Все измерения размыты, разрежены и т. д. Там ни пространства ни времени - ничего.
Меня вот другое с некоторого времени беспокоит - по словам ученых, через какой-то (громадный) промежуток времени вся эта "расширяющаяся Вселенная" начнет обратно сжиматься...

Ответ от располосовать [гуру]
Возьмите энциклопедию. по астрономии..


Ответ от Ольга Шеффер [гуру]
ага. А ещё когда всё началось и когда закончится. И что за границами вселенной. А самое главное откуда-то ведь всё это взялось. Спасибо. Сутки мозги кипеть будут. Тьфу


Ответ от Ино Планетянин [гуру]
в принципе никто и не даст вразумительного ответа, это выше человеческого разума, но у буддистов есть понятие "нечто больше чем бесконечность"


Ответ от Европейский [гуру]
Этот вопрос скорее всего можно отнести к философии, нежели к науке.
Вселенная... скопление миллиардов галактик, возникшая в результате Большого взрыва - скажет ученый - материалист. Филосов пойдёт дальше. Он спросит: а что было первопричиной возникновения Большого взрыва? Существует эзотерическое толкование, что первопричиной всего материального, от минерала до вселенной, есть Эфир. Это нечто нематериальное, неподвластное никаким физическим характеристикам. Это высшая степень НЕматерии. В древнейшей на Земле религии Бонпо (древнеиндусская религия, предшественница Буддизма) Эфир описывается, как спиральный вихрь, заставляющий всё материальное двигаться, вращаться, эволюционировать.
Это не подвластно разуму нашей цивилизации, так как у нас в мозгу есть "стабилизатор мышления", который не даёт мысли ни одного учёного, или философа хотя бы близко подойти к решению этого вопроса. Не пришло ещё время открыть нам эту тайну... А жаль!! !
Религиозная точка зрения:
...И разделил Бог свет и тьму... подразумевается создание Богом Вселенной;
Может я и не ответил на вопрос, но старался!


Ответ от Longines [гуру]
Размер, возраст, содержание, структура и законы
Расстояния, доступные совреенным телескопам, составляют миллиарды световых лет. Вселенную на таких масштабах изучает астрономия и космология. Теоретической базой для космологии является общая теория относительности.
В самом крупном масштабе Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры представляют собой скопления миллиардов галактик. Расстояния между ближайшими друг к другу галактиками составляют около миллиона световых лет.
Каждая галактика составлена из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик составляют до сотен тысяч световых лет.
Считается, что большинство звёзд являются кратными и представляют собой центры планетарных систем из нескольких планет. Расстояния между компаньонами кратных систем или планетами и их звёздами составляют десятки и сотни астрономических единиц (миллиарды и десятки миллиардов километров) .
Наиболее важный результат космологии - открытие расширения Вселенной - был получен путём наблюдений красного смещения и количественно оценен законом Хаббла. Экстраполяция этого расширения назад во времени приводит к гравитационной сингулярности, абстрактному математическому понятию, которое может соответствовать или не соответствовать реальности. Это даёт основание теории Большого взрыва, доминирующей на сегодня модели в космологии. Согласно данным НАСА, полученным с помощью WMAP, возраст Вселенной от момента Большого взрыва был оценен в 13,7 миллиарда лет с погрешностью в один процент. Данная оценка основывается на предположении, что лежащая в основе модель для анализа данных корректна. Другие методы оценки возраста Вселенной дают другие результаты.
Фундаментальным доводом в пользу Большого взрыва является тот факт, что чем дальше галактика находится от нас, тем быстрее она удаляется от нас. Подтверждением также служит космическое микроволновое фоновое излучение (реликтовое излучение) , которое возникло вскоре после Большого взрыва. Это реликтовое излучение однородно во всех направлениях. Этот факт космологи пытались объяснить ранним периодом инфляционного расширения, последовавшего за Большим взрывом.
Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 24 Гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше благодаря всё увеличивающейся скорости расширения Вселенной и оценивается в 93 миллиардов световых лет.
Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска такой трёхмерной фигуры, которая наилучшим образом представляет пространственный аспект Вселенной.
Во-первых, неизвестно, является ли Вселенная пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах. В настоящее время большинство космологов полагают, что наблюдаемая Вселенная очень близка к пространственно плоской, с локальными складками, где массивные объекты искажают пространство-время. Это мнение было подтверждено последними данными WMAP, рассматривающими «акустические осцилляции» в температурных отклонениях реликтового излучения.

Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Физика добилась больших успехов в изучении макроскопических и микроскопических свойств природы, однако, понимание и объяснение свойств Вселенной в целом происходило не так уверенно. Извечные вопросы, которые всегда волновали человечество, во многом не разрешены до сих пор. Как возникли звезды, планеты, вся Вселенная? Как развивалась эта Вселенная в прошлом, куда движется в настоящем и что ее ждет в будущем? На некоторые вопросы мы может ответить сейчас, другие ждут своего ответа. Но каждый шаг вперед ставит также и новые вопросы, раздвигая области неведомого. Сколько вещества во Вселенной? Существуют ли во Вселенной другие виды материи? Неизвестна природа странных объектов, излучающих фантастическое количество энергии из дальнего Космоса. И так далее...

Тем не менее, к настоящему времени сложились определенные научные представления о происхождении и эволюции Вселенной. Следует сразу отметить, что одним из основных затруднений при изучении астрономических и космологических событий является то, что над изучаемым объектом нельзя провести контрольного эксперимента. Мы можем наблюдать лишь естественный ход событий. Поэтому, можно сказать, поразительным является не безграничное разнообразие наблюдаемых астрономических событий, а возможность, анализируя эти явления, делать выводы относительно эволюции звезд и галактик на протяжении миллиардов лет.

Остановимся на физических основаниях космологии и астрофизики. Предметом космологии является изучение строения, происхождения и эволюции Вселенной как целого. Поэтому космология связана с общей теорией относительности (ОТО), поскольку во Вселенной приходится иметь дело с большими расстояниями, высокими скоростями и огромными массами.

Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки ОТО. Эйнштейн показал, что ОТО однозначно объясняет возможность существования статической вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех ОТО. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердила это. Однако уже в 1922 г. наш соотечественник А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной Он утверждал, что искривленное пространство не должно быть стационарным, оно должно или расширяться, или сжиматься. И Эйнштейн вынужден был публично согласиться с выводами Фридмана. К сожалению, работы Фридмана, в частности его книга «Мир как пространство и время», были подвергнуты умолчанию вплоть до настоящего времени. Его работы не переиздавались и не пропагандировались, а автором теории расширяющейся Вселенной объявляется аббат Ж. Леметр, президент Папской академии наук в Ватикане. В значительной мере это связано с идеологической кампанией против «физического идеализма», развернутой в СССР в 30-50-е годы . Стационарная, бесконечная в пространстве и времени Вселенная фигурировала и в философии Канта, Гегеля и Энгельса и была «узаконена» Марксистско-Ленинской философией. Все другие представления были объявлены ошибочными и лженаучными, в том числе и сама теория относительности А. Эйнштейна.

И действительно через какое-то время была создана теория расширяющейся Вселенной, причем она была подтверждена экспериментально. Из телескопических наблюдений звезд было установлено, что кроме нашей Галактики, звездного скопления в виде Млечного пути, существует огромное количество других галактик. Как мы уже указывали в главе 1.4 по красному смещению, точнее смещению световых лучей к красному концу видимого спектра, можно определить движение объекта относительно наблюдателя. В более общем виде - это так называемый эффект Доплера при распространении волны любой природы и движении источника этой волны относительно наблюдателя. Например, звуковой сигнал движущегося поезда относительно неподвижного наблюдателя на платформе будет выше, когда поезд приближается к нему, и ниже, когда удаляется. Так вот, экспериментально наблюдались и измерялись радиальные движения (от нас или к нам) отдельных звезд, а затем и галактик методом эффекта Доплера. Было установлено, что если звезда движется к нам, то спектральные линии смещаются к фиолетовому концу спектра, если от нас - то к красному концу.

При анализе изучения далекий галактик получился удивительный результат: у всех галактик наблюдается красное смещение! Поэтому можно считать, что они удаляются от нас. Причем величина этого красного смещения и, следовательно, скорость разбегания галактик больше для более удаленных галактик (что само по себе чрезвычайно удивительно и до сих пор причина этого не выяснена):

где S - лучевая скорость, r - расстояние до объекта, Н - постоянная Хаббла, равная ~(3 - 5)×10 -18 c -1 и названная так в честь Э. Хаббла, который в 1929 г. экспериментально подтвердил расширение Вселенной. Из Н можно определить возраст Вселенной (t ~ 1/H), который оценивается 10-20 миллиардов лет. В 1997 г. появились данные измерений расстояния до галактики Н100 в созвездии Девы, что Н больше, чем предполагалось, и тогда возраст вселенной составит 8 миллиардов лет. Кстати по данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.

Если все галактики удаляются от нас, то возникает вопрос: не занимаем ли мы особого положения во Вселенной? Простой физический опыт не дает оснований полагать, что это так. Предположим, что мы надуваем воздушный шарик, на поверхности которого равномерно нанесены пятнышки. По мере того как шарик будет раздуваться, наблюдателю, находящемуся на одном из пятнышек, будет казаться, что все другие пятнышки удаляются от него. Более того. ему будет казаться, что более далекие пятнышки удаляются значительно быстрее, чем те которые расположены близко. Такие же результаты получаются, естественно, при наблюдении из любого другого пятнышка. Таким образом, при однородном расширении будут увеличиваться все расстояния между пятнышками. Поэтому изменение красного смещения обычно трактуется как очевидное доказательство, что Вселенная расширяется. Так как расширение, по-видимому, происходит равномерно во все стороны, то «центра» Вселенной явно выделить нельзя. Естественно остается много вопросов: почему Вселенная расширяется, будет ли она расширяться дальше или сожмется? Конечна она или бесконечна? Как образуются галактики, из чего состоят? И т.д.

Не останавливаясь подробно здесь на других ранних моделях, напомню все же, что в историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III веке до нашей эры предложил гелиоцентрическую систему, возрожденную польским священником Коперником в 1514 г. Сюда же можно отнести и античную систему Птоломея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и Кеплер (эллиптические орбиты вместо круговых) и Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII веке. Уже в это время (а идеи Джордано Бруно еще ранее - XVI век) возникли представления о бесконечной Вселенной. В XIX веке они развились в представления Платона о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна.

Предполагалось, что пространство - абсолютно, однородно и изотропно, а время - абсолютно и однородно, т.е. использовались строительные материалы классической механики и евклидовой геометрии. Это, кстати, устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном так и во временном понимании. Бог создал и все! Кстати, с материалистической точки зрения можно предположить, что теологии - это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на гуманитарном языке, можно сказать - оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла согласно как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в СТО и ОТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время - уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.

В настоящее время существует много космологических теорий, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов. Однако одна из современных таких теорий - теория Большого взрыва (Big Bang) - смогла к настоящему времени объяснить почти все факты, связанные с космологией.

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 10 миллиардов лет тому назад, когда все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 10 25 г/см 3 и температурой свыше 10 16 К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва (БВ) была предложена в 1948 г. нашим соотечественником Г. Гамовым. В свое время Г. Гамов, блестящий теоретик (учился в ЛГУ вместе с Л. Ландау, Н. Козыревым), до войны был самым молодым членом-корреспондентом АН СССР, затем эмигрировал на Запад и по сему поводу, естественно, до последнего времени замалчивался советской официальной наукой. В то же время ему принадлежат по крайней мере три научных результата «нобелевского ранга»: модель БВ, предсказание температуры реликтового излучения и генетического кода ДНК. Кроме того он был отличным популяризатором науки и опубликовал более 20 прекрасных научных книг.

В то же время неизвестно достоверно - как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее, огромное радиационное давление внутри этого сгустка привело к необычайно быстрому его расширению - Большому Взрыву. Составные части этого сгустка, разлетевшиеся с максимальными относительными скоростями, теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какие они были примерно 2 ×10 9 лет тому назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва (ТБВ). Заметим здесь, что открытие расширяющейся Вселенной и принятие научным сообществом этого факта можно считать огромным мировоззренческим прорывом в интеллектуальном мире.

Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после БВ. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но в результате их могло быть образование лишь гелия. Спектр гелия наблюдался в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента от греческого Гелиос - Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода - (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвездном пространстве водород и гелий находятся в основном в атомарном состоянии. Таким образом теория БВ согласуется с наблюдаемой распространенностью гелия во Вселенной.

Рассмотрим варианты объяснения образования сгустка. Предполагается, что эти межзвездные атомы водорода и гелия служат сырьем для образования новых звезд. Заметим, что распределение газа в межзвездном пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~ 1 атом/см 3 , однако имеются сильные флуктуации. Эти флуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.

Наиболее важным подтверждением теории БВ является обнаружение реликтового излучения (РИ), как раз и связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел наш астрофизик И. Шкловский. Первоначально это излучение представляло собой лучи, которые обладали огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия фотонов уменьшилась, т.е. возросла длина их волны. Это излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Г. Гамов как раз и рассчитал температуру реликтового излучения. По расчетам она составляет 3К, согласно современным данным 2,7 К.

Рассматривая такой сгусток вещества и излучения, мы должны понимать, что его нельзя рассматривать как бы со стороны, с далекого расстояния, и считать, что он расширяется по направлению к нам (или от нас). Сгусток есть ни что иное как сама Вселенная, и Земля находится внутри нее. Внутри же сгустка при расширении его все остальное вещество во Вселенной движется в направлении от Земли (вспомним шарик с пятнышками), или от любого куска вещества в сгустке. Поэтому излучение сгустка бомбардирует Землю со всех сторон. Любой наблюдатель во Вселенной должен регистрировать это излучение с равной интенсивностью с любого направления в пространстве.

Так как расширение продолжается ~10 10 лет, то огромная начальная температура уменьшилась согласно теории, к настоящему времени до средней температуры Вселенной порядка 3 К. Максимум в распределении длин волн, соответствующий излучению источника с такой температурой в 3К, должен приходиться на длину волны 0,1 см. Это означает, что если теория БВ верна, то должны экспериментально наблюдаться два эффекта: спектр излучения Вселенной должен соответствовать равновесному излучению при 3К и это излучение должно приходить с равной интенсивностью с любого направления в пространстве, т.е. быть изотропным. Начиная с 1965 г. проводились многочисленные измерения, обнаружившие космические радиоволны с малой энергией, которые можно интерпретировать как равновесное излучение остывшего, но все еще расширяющегося сгустка, причем с длиной волны, соответствующей Т = 3К. Таким образом, получены некоторые экспериментальные доказательства справедливости теории БВ.

Если считать, что эксперименты подтверждают нынешнее расширение Вселенной, то будет ли она продолжать расширяться и дальше? ОТО предполагает следующий ответ на этот вопрос. Считается, что существует некая критическая масса Вселенной. Если действительная масса Вселенной меньше критической, гравитационного притяжения вещества во Вселенной будет недостаточно, чтобы остановить это расширение, и оно будет идти и дальше. Если же действительная реальная масса больше критической, то гравитационное притяжение в конце концов замедлит расширение, приостановит его и затем приведет к сжатию. В этом случае Вселенную ожидает коллапс, в результате которого вновь образуется сгусток. Тем самым готовы условия для нового Большого взрыва и последующего потом расширения. Следовательно, Вселенная может пульсировать между состояниями максимального расширения и коллапса. Это и есть модель пульсирующей Вселенной.

Что дают эксперименты? Они, конечно, очень не простые, скорее оценочные, так как кроме определения массы Вселенной в виде вещества и энергии в звездах, галактической пыли и газе необходимо учитывать вещество и в межгалактическом пространстве. А вот с этим как раз большая неопределенность. Прямые эксперименты затруднены тем, что межгалактический водород почти полностью ионизирован излучением галактик и квазизвездных объектов (квазаров). Поэтому для регистрации ионизированного водорода необходимы рентгеновские методы измерения и вне пределов атмосферы Земли, чтобы избежать поглощения. Как показывают измерения с помощью ракет и спутников, а также предварительные расчеты, полная масса Вселенной с учетом межгалактического вещества значительно превышает критическую. Это означает, что модель пульсирующей Вселенной как будто подтверждается. Получается, что мы живем в такой вселенной, которая взрывается, расширяется и снова сжимается примерно каждые 80 миллиардов лет.

Рассмотрим, каким предполагается поведение горячей Вселенной, расширяющейся после своих родов во время Большого Взрыва. Известный наш теоретик, занимавшийся в том числе и астрофизикой, Я.Б. Зельдович заметил, что теория БВ в настоящий момент не имеет сколько-нибудь заметных недостатков. Она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени и обе они имели много противников, утверждавших, что новые идеи, изложенные в них, абсурдны и противоречат здравому смыслу. Однако вспомним определение Эйнштейном здравого смысла!

Успех модели расширяющейся Вселенной связан не только с экспериментальными подтверждениями, о которых мы говорили ранее, но и с тем, что, как оказалось, физикой микромира, в том числе физикой элементарных частиц, можно непротиворечиво объяснить поведение «ранней» Вселенной, причем, как это не парадоксально звучит, буквально по долям микросекунд (и даже более того, отсчет идет от 10 -43 с). Поэтому в этом разделе рассмотрим кратко и имеющиеся представления о физике элементарных частиц. Вообще же, по существу сейчас возникла новая наука - космомикрофизика. В космомикрофизике объединяются не только космологические модели Большого Взрыва, расширяющейся и пульсирующей Вселенной, а также и строение материи в виде элементарных частиц и понятия устойчивости-неустойчивости материи, ее симметрии-асимметрии, самоорганизации и эволюции. Модель горячей Вселенной описывает ее как «котел кипящих элементарных частиц».

Каков же сценарий, как любят говорить космологи, развития событий по модели БВ и горячей Вселенной? Сразу после БВ Вселенная представляла собой огненный шар из элементарных частиц и фотонов (свет) огромных энергий со взаимными превращениями. Дальше Вселенная стала расширяться с уменьшением плотности и температуры. При предполагаемых громадных плотностях (~10 25 г/см 3) и температурах (~10 16 К) вещество состоит только из элементарных частиц - протонов и нейтронов. Частицы движутся так быстро, что при столкновениях образуются парами новые частицы (частица- античастица). Вообще говоря, чем выше температура Вселенной, тем более тяжелые частицы могут рождаться при столкновениях. В этой модели поведения Вселенной можно установить взаимосвязь между плотностью, температурой и временем жизни вселенной:

, (1.6.2)

где r - среднее значение плотности материи во Вселенной в момент времени t (с) от начала расширения;

Предполагается, что качественный состав элементарных частиц, образующих новую Вселенную меняется при ее расширении. Когда Вселенной «исполнилось» 10 -43 с, все фундаментальные взаимодействия в природе были объединены и имели одинаковую интенсивность. Через 10 -23 с наступило время тяжелых частиц, точнее того, из чего они состоят, - кварков. В это время вся Вселенная состояла из кварков и антикварков. По мере уменьшения температуры и с ростом времени уменьшалось число пар этих тяжелых частиц и за счет аннигиляции они быстро исчезали. Далее еще через 10 -2 с после БВ наступает время легких частиц. Вселенная как бы «омолодилась» и практически состояла из легких частиц - лептонов и излучения ( фотонов). Еще дальше во времени (~1 - 20 c) Вселенная, расширяясь дальше, теряет и эти частицы. При аннигиляции они превращаются в фотоны. Фотонам же не хватает энергии, чтобы образовать электрон-позитронную пару, и поэтому излучение преобладает над частицами.

Через ~100 с жизни Вселенной ее температура упала до 109 К и скорости оставшихся протонов уменьшились настолько, что за счет ядерных сил притяжения они начинают соединяться в ядра легких элементов, в основном гелия, затем лития и бериллия. По прошествии нескольких часов после ВВ образование этих ядер закончилось. Этот период эволюции называется временем нуклеосинтеза. А дальше счет пошел уже на миллионы лет. Вселенная продолжала расширяться и охлаждаться. При этом энергии фотонов были значительно больше сил связи электронов и ядер, и поэтому атомы пока не могли образоваться. Затем при уменьшении температуры до 3000 К энергия электромагнитного притяжения ядра и электрона становится больше энергии фотонов и тогда начинают образовываться атомы водорода и гелия. Фотоны перестали взаимодействовать с веществом, как говорят космологи, Вселенная стала прозрачной. Предполагается, что с тех дальних времен до наших дней эти фотоны (это излучение) заполняют нашу Вселенную. За это время температура упала с 3000 К до 3 К в наше время. Это и есть реликтовое излучение, о котором мы уже говорили. Таким образом РИ несет нам информацию о молодой Вселенной, когда ей исполнилось «всего» 1 миллион лет. Теперь в рамках модели расширяющейся Вселенной можно построить схему физической истории Вселенной (рис.
).

В начальный период времени прозрачная Вселенная была однородным «бульоном» из элементарных частиц, ядер, атомов и фотонов. Затем флуктуационно возникали области, где плотность материи несколько выше. Это, в свою очередь, привело к увеличению гравитационного притяжения в этих областях, а значит к отставанию этих областей от общего темпа расширения Вселенной. Атомы и частицы в этих областях испытывали большое число столкновений (объем-то уменьшился!), газ разогревался, шли термоядерные реакции. Давление внутри области возрастало, область перестала сжиматься.

Заметим, что хотя теория или модель БВ в целом оправдывает доверие научного мира, но все же некоторые вещи она объяснить не может. Так, она не может объяснить конкретную причину БВ, причину «первотолчка». Кроме того, почему мощность взрыва была именно такой, какой была, не больше и не меньше. И скорость разлета, и плотность вещества очень близки к критическим значением. Теория не может также объяснить причину крупномасштабной однородности Вселенной, но одновременно в меньших масштабах допускает наличие в прошлом отклонений от однородности, которые и привели впоследствии к возникновению галактик. При этом предполагается, что расширение происходит с большой степенью однородности и изотропности, а удаленные друг от друга неоднородности причинно между собой не связаны.

Частично эти вопросы снимает еще одна современная модель - сценарий раздувающейся Вселенной (РВ). Это модель хаотического раздувания в период времени от 10 -43 до 10 -32 с, и связана она с понятием вакуума. Согласно этим идеям, Вселенная начала свою жизнь из состояния вакуума, лишенного вещества и излучения. Заметим, что проблема вакуума сейчас становится одной из центральных в физике.

По современным представлениям вакуум - особый тип физической реальности, наиболее фундаментальное состояние материи, особое «ничто», скрытое бытие, содержащее в потенции всевозможные частицы и при сообщении энергии этому вакууму из него можно извлечь любые частицы и объекты, в том числе не только нашу Вселенную, но и другие вселенные. В этой модели предполагается, что Вселенная родилась 15-18 миллиардов лет тому назад из вакуума путем спонтанного (самопроизвольного) нарушения его симметрии. Получается, что Вселенная как бы самозародилась. Конечно, это выглядит несколько парадоксально: чем не Божественное сотворение Мира?

Вот что говорил по этому поводу упомянутый уже нами Я.Б. Зельдович: «Понятие классической космологической сингулярности должно быть существенным образом заменено квантово-гравитационным процессом, описывающим рождение нашего мира. Предполагается, что в начальном состоянии не было ничего, кроме вакуумных колебаний всех физических полей, включая гравитационное. Поскольку понятия пространства и времени являются существенно классическими, то в начальном состоянии не было реальных частиц, реального метрического пространства и времени. Считаем, что в результате квантовой флуктуации и образовалась трехмерная геометрия... Кроме того, на этой стадии из вакуумных флуктуаций негравитационных полей рождаются флуктуации плотности вещества, которые значительно позже, в близкую нам эпоху, приводят к образованию скоплений галактик, нашей Галактики, звезд и в конечном итоге планет и самой жизни».

Стоит также отметить, что модель раздувающейся Вселенной еще раз обращает нас к глобальной мировоззренческой проблеме - проблеме множественности миров. В частности, один из создателей модели РВ А.Д. Линде отмечает: «Привычный взгляд на Вселенную как на нечто в целом однородное и изотропное сменяется представлением о Вселенной островного типа, состоящей из многих локально-однородных и изотропных минивселенных, в каждой из которых свойства элементарных частиц, величина энергии вакуума и даже размерность пространства могут быть различны».

В этом смысле можно уже по-другому взглянуть на проблему жизни «разумных» существ в других галактиках. Из вышесказанного следует, что другие галактики могут иметь совершенно другие свойства и взаимодействовать (говорить) на совершенно других языках без принципиальной возможности перевода. И дело здесь, как правильно отмечает Ровкин , не в изменении нашего мышления для понимания другой Вселенной, а в изменении структуры, пространственной ориентировки, размерности материального мира, носителя мышления, т.е. нас самих, и все это без представления, как это сделать! Можно отметить, что может быть поэтому свернута программа СЕТI поиска связи с другими «разумными» цивилизациями. Нужны иные принципиальные подходы, до которых человечество на Земле, видимо, не доросло.

Рассмотрим теперь, из чего же состоит вещество Вселенной, из чего состоит тот сгусток, который и привел к Большому Взрыву? В космомикрофизике материя Вселенной представляется состоящей из элементарных частиц, как наименьших структурных единиц вещества. Развивая далее атомистическую модель Демокрита о том, что весь мир состоит из атомов, на современном уровне мы уже должны говорить, что он состоит из взаимодействующих элементарных частиц. Как уже отмечалось, во времена Аристотеля предполагались четыре основные субстанции - земля, воздух, огонь и вода. Все сущее состояло из этих своего рода «элементарных частиц». В дальнейшем к началу 30-х годов нашего столетия наука смогла дать более приемлемое научное описание строения вещества на основе четырех видов элементарных частиц: протонов, нейтронов, электронов и фотонов. Используя эти устойчивые и стабильные образования, а также и законы квантовой механики, удалось объяснить природу химических элементов, их классификацию (таблица Менделеева), образование различных соединений и испускаемых ими излучений. Добавление к ним пятой частицы нейтрино, сначала, кстати, постулированного Паули из-за необходимости сохранения момента импульса при b-распаде, позволило объяснить процессы радиоактивного распада. Поэтому вначале казалось, что названные элементарные частицы и являются как бы основными кирпичиками мироздания.

Однако, к сожалению, приятная простота вскоре исчезла. Не прошло и года с открытия нейтрона (Чадвик, 1931), как был обнаружен позитрон. Он тоже сначала был предсказан Дираком в 1928 г., который показал, что его релятивистское уравнение может описывать как электрон с обычным отрицательным зарядом (-е), так и положительный электрон (+е). Этот позитрон был в дальнейшем в 1932 г. экспериментально обнаружен Андерсеном. Впоследствии сначала в природных космических лучах, а затем и в построенных ускорителях были обнаружены и другие частицы - мезоны, пионы и т.д. Таких частиц сейчас насчитывается уже более двух сотен.

Релятивистской квантовой теорией было установлено, что любой элементарной частице соответствует античастица в том смысле, что имея одинаковые массы, периоды полураспада, а также одинаковые квантовые числа, они проявляют противоположные электромагнитные свойства. Таким образом возникла глобальная проблема частица - античастица. Простой пример - разные по знаку заряда частицы. Причем при столкновении частицы и античастицы происходит аннигиляция, т.е. они взаимно уничтожают друг друга и при этом выделяется энергия в виде квантов электромагнитного излучения ( фотонов). Заметим, что фотоны, нейтральные пионы и η°-мезоны тождественны собственными античастицам, т.е. эти частицы и их античастицы не различимы. Все это множество частиц и принято называть элементарными частицами. Следует подчеркнуть, что это не означает, что все они обязательно являются упомянутыми кирпичиками мироздания - для этого достаточно протонов, нейтронов и электронов, из них состоят атомы. Но эти частицы возникают в результате основных взаимодействий частиц обычного вещества и участвуют в этих взаимодействиях, т.е. их тоже необходимо учитывать.

Изобилие типов элементарных частиц поставило перед физиками трудные вопросы: что же лежит в основе строения вещества, есть ли какая-нибудь общая схема, систематика, которая позволила бы просто и ясно объяснить взаимную связь элементарных частиц? Физики - тоже люди, и они упорно верят в то, что природе присуща внутренняя гармония и существует единый принцип, который, когда его откроют, позволит построить общую картину и систематизировать это обилие частиц.

В настоящее время в основе современной классификации элементарных частиц лежит их деление на два класса: сильновзаимодействующих (адроны) и слабовзаимодействующих ( лептоны). Адроны делятся так же на мезоны и барионы, а последние, в свою очередь, на нуклоны (нейтроны и протоны) и гипероны (λ, Σ, Θ, Ω). Название гипероны происходит от греческого «гипер» - выше, так как они тяжелее протона, барионы - греческого «барис» - тяжелый. К лептонам относятся электроны, мюоны и нейтрино. Барионы при любых реакциях могут превращаться в протоны или из них получаться. Барионам приписывается особое число В = 1, антибарионы имеют В = -1. В теории элементарных частиц показывается, что существует закон сохранения барионного числа в любом процессе. Именно этим законом обусловлена невозможность аннигиляции протона и электрона в обычных условиях, потому что протон - это барион, а электрон - лептон. С точки зрения квантовой статистики, частицы с разными (целыми и полуцелыми) спинами могут также разделяться на фермионы (статистика Ферми) с полуцелым спином (1/2) (электрон, нейтрон, мюон, протон, гиперон), бозоны (статистика Бозе) с целым (0 или 1) спином (пион (π-мезон), каон (К-мезон), фотон). Фермионы всегда, без исключения, возникают или аннигилируют парами. С другой стороны, бозоны могут рождаться или поглощаться по одному и группами по нескольку частиц.

В дополнение к закону сохранения числа барионов Гелл-Манн и Нишиджима в 1953 г. ввели еще одну квантовую характеристику - странность S , для которой тоже существует закон сохранения, согласно которому странность сохраняется во всех сильных (ядерных) взаимодействиях. Эти законы позволяют прогнозировать природу взаимодействия различных элементарных частиц. К концу 50-х годов нашего века численность и разнообразие элементарных частиц настолько выросли, что классификация их только по массе, заряду и спину, даже с учетом упомянутых законов сохранения барионного числа и странности, вызывала у физиков-теоретиков значительное неудовлетворение. Появлялись даже идеи, что за этим разнообразием скрывается некая симметрия.

Развитием этого поиска явилось еще одно изобретение Гелл-Манна (1963), а затем, независимо от него, Цвейга (1964) - модель кварков. В этой модели предполагается, что все сильновзаимодействующие элементарные частицы являются комбинациями трех основных частиц (которые называются кварками) и их античастиц. Название «кварк» взято Гелл-Манном из туманной фазы романа Дж. Джойса «Поминки по Финнегану»: «Три кварка для мистера Марка». Кварки имеют необычные свойства: электрический заряд, равный ±1/3 е или ±2/3 е , и барионное число (заряд), тоже дробное, равное ±1/3. Обозначения кварков и антикварков, а также их параметров даны в таблице.

Свойства кварков

Символ Заряд
q

S
Барионное число B
s
Kварки +2/3 e 0 1/3 1/2
–1/3 e 0 1/3 1/2
–1/3 e –1 1/3 1/2
Антикварки –1/3 e +1 –1/3 1/2
+1/3 e 0 –1/3 1/2
–2/3 e 0 –1/3 1/2

Таким образом, основные свойства кварков - заряд q (+2/3 е , -1/3 е , -1/3 е ), странность S (0, 0, -1), барионное число В (1/3, 1/3, 1/3) и спин s (1/2) не похожи на свойства других частиц. Однако различные комбинации этих гипотетических частиц воспроизводят свойства всех известных адронов с поразительной точностью. Предполагается, что, например, барионы построены из трех кварков, а мезоны - из двух кварков (кварк - антикварк). Реальны ли кварки в действительности или эта модель служит лишь удобным средством описания элементарных частиц, но лишена физического реального смысла? Пока это неизвестно. Кстати, последними исследованиями показано, что кварки не являются самыми «неделимыми». Обнаружены уже протокварки.

Тем не менее, несмотря на то, что экспериментально кварки в свободном состоянии не обнаружены, в теории элементарных частиц существует так называемая «стандартная модель». Согласно этой модели кварки различаются «ароматом»: u (от up - верхний), d (от down - нижний), s (от strange - странный), с (от charm - очарование), b (от beauty - красота), t (от truth - истинный). Кроме того кварки разделяются еще по одному параметру, который назвали «цветом». Для каждого кварка существует три «цвета»: красный, желтый и синий. Ясно, что к реальному цвету этот признак не имеет никакого отношения, так же как и «аромат» к реальному обычному запаху. Современные представления о природе таковы, что в рамках этой «стандартной модели» существуют всего три поколения кварков, лептонов и нейтрино, которые и представляют собой начальный уровень структурной организации материи.

Остановимся теперь на характере взаимодействия элементарных частиц. В настоящее время известны четыре фундаментальных взаимодействия: гравитационное, электромагнитное, слабое и сильное. Гравитационное и электромагнитное взаимодействия по сути своих названий относятся к силам, возникающим в гравитационных и электромагнитных полях. Заметим еще раз, что несмотря на «приоритет» гравитационного взаимодействия, количественно установленного еще Ньютоном, природа его до сих пор не является полностью определенной и на самом деле не ясно, как передается это действие через пространство.

Ядерные силы, относящиеся к сильным взаимодействиям, действуют на малых расстояниях в ядрах и обеспечивают их устойчивость, несмотря на отталкивающие действия кулоновских сил электромагнитных полей. Поэтому ядерные силы являются в основном силами притяжения и действуют между протонами (р-р), нейтронами (n-n). Существует также протон-нейтронное взаимодействие (p-n). Поскольку эти частицы объединены в одну группу нуклонов, то это взаимодействие нуклон-нуклонное. Слабые взаимодействия проявляются в процессе ядерного распада или более широко - в процессах взаимодействия электрона и нейтрино (оно может существовать также и между любыми парами элементарных частиц). Как мы уже знаем, гравитационное и электромагнитное взаимодействия меняются с расстоянием как 1/r 2 и являются дальнодействующими. Сильное ядерное и слабое взаимодействия являются короткодействующими. По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное), электрическое, слабое, гравитационное.

Этим основным взаимодействиям соответствуют четыре мировых константы. Заметим, что подавляющее число физических констант имеют размерности, зависящие от системы единиц отсчета, например в СИ заряд электрона е = 6 ×10 -19 Кл, его масса m = 9,1 ×10 -31 кг. Оказалось, что в различных системах отсчета основные единицы имеют не только различные размерности, но даже и численные значения. Такое положение не устраивает науку, так как, естественно, хотелось бы иметь безразмерные константы, не связанные в общем-то с условным выбором исходных единиц систем отсчета. Кроме того, фундаментальные константы не выводятся из физических теорий, а определяются экспериментально. В этом смысле теоретическую физику, действительно, нельзя считать самодостаточной и законченной для объяснения свойств природы, пока проблема, связанная с мировыми константами, не будет понята и объяснена .

Анализ размерностей физических констант приводит к пониманию того, что они играют очень важную роль в построении отдельных физических теорий. Однако, если попытаться создать единое теоретическое описание всех физических процессов, т.е., другими словами, сформулировать унифицированную научную картину мира от микро- до макроуровня, то главную, определяющую роль должны играть безразмерные, т.е. «истинно» мировые константы. Это и есть константы основных взаимодействий.

Константа гравитационного взаимодействия

(1.6.4)

Константа электромагнитного взаимодействия

(1.6.5)

Константа сильного взаимодействия

где g - цветовой заряд, причем . Индекс «s» - от английского слова «strong» (сильный).

Константа слабого взаимодействия

(1.6.7)

где g ~ 1,4 ×10 -62 Дж ×м 3 - константа Ферми. Индекс «w» - от английского слова «weak» (слабый). Заметим, что размерную константу гравитационного взаимодействия получил еще сам И. Ньютон : G ~ 6,67×10 -11 м 3 ×c 2 ×кг -1 для сил гравитационного взаимодействия

F = G Mm/R 2 . (1.6.8)

Мы помним также, что закон всемирного тяготения (1.6.8) недоказуем, так как получен путем обобщения опытных фактов. Причем абсолютная справедливость его не может быть гарантирована до тех пор, пока не станет ясным сам механизм тяготения. Константа электромагнитного взаимодействия отвечает за превращение заряженных частиц в такие же частицы, но при изменении скорости их движения и появлении дополнительной частицы - фотона. Сильное и слабое взаимодействия проявляются в процессах микромира, где возможны взаимопревращения частиц. Константа сильного взаимодействия количественно определяет взаимодействие барионов. Константа слабого взаимодействия связана с интенсивностью превращений элементарных частиц при участии нейтрино и антинейтрино.

Таким образом, считается, что все четыре вида взаимодействия и их константы обусловливают нынешнее строение и существование Вселенной. Так, гравитационное - удерживает планеты на их орбитах и тела - на Земле. Электромагнитное - удерживает электроны в атомах и соединяет их в молекулы, из которых, в том числе, состоим и мы сами. Слабое - обеспечивает длительное горение Солнца, дающего энергию для протекания всех процессов на Земле. Сильное взаимодействие обеспечивает возможность стабильного существования ядер атомов. Теоретическая физика показывает, что изменение числовых значений этих констант приводит к разрушению устойчивости одного или нескольких структурных элементов Вселенной. Например, изменение массы покоя электрона m 0 от ~0,5 МэВ до 0,9 МэВ приведет к невозможности энергетического баланса в реакции образования дейтрона в солнечном цикле. Дейтрон - атом водорода, состоящий из протона и нейтрона. Это «тяжелый» водород с А = 2 (тритий имеет А = 3). Уменьшение α s всего на 40% привело бы к тому, что дейтрон был бы не стабилен. Увеличение же делало бы стабильным бипротон, что привело бы к выгоранию водорода на ранних стадиях эволюции Вселенной. Константа α e изменяется в пределах . Другие значения приводят к невозможности должного отталкивания протонов в ядрах, а это ведет к нестабильности атомов. Увеличение α w приводит к уменьшению времени жизни свободного нейтрона. Это, в свою очередь, означает, что на ранней стадии Вселенной не образовался бы гелий и не было бы реакции тройного слияния α-частиц при синтезе углерода (). Тогда вместо нашей углеродной была бы водородная Вселенная. С другой стороны, уменьшение α w привело бы к тому, что все протоны оказались бы связаны в α-частицы.

В современном естествознании предполагается, что мировые константы стабильны начиная со времени 10 -35 с с момента рождения Вселенной, и что таким образом в нашей Вселенной как бы существует очень точная «подгонка» числовых значений мировых констант, обусловливающих существование ядер, атомов, звезд и галактик. Возникновение и существование такой ситуации не ясно. Тем не менее, эта «подгонка» (константы именно такие, какие они есть!) создает условия для существования не только сложных неорганических, органических и живых структур, но, в конечном счете, и человека .

Так из чего же все-таки состоит вещество Вселенной? Как ни странно, теоретическая физика, с точки зрения рассмотренной нами теории элементарных частиц, с ее могучим аппаратом и не менее могучими моделями отвечает: до 90% вещества Вселенной находится в неизвестном нам состоянии. Было установлено, что протоны и нейтроны образуют либо ядра различных атомов, либо громадные скопления нейтронных звезд. Поэтому в рамках «стандартной модели» кварков формы стабильной материи рассматриваются в виде двух групп: ядра атомов, имеющие массу не более 300 атомных единиц, и нейтронные звезды, имеющие структуру ядра (т.е. состоят из нейтронов и протонов), но с массой в 10 54 раз большей. Эти группы разделены огромным пробелом, состоящим предположительно их так называемой «странной» материи, в котором, может быть, находится до 90% всей массы Вселенной (рис.
).

Наличие возможности существования такой странной материи в кварковой модели строения вещества отчасти подтверждается выводом из наблюдений дальних галактик о невозможности наблюдения многих космологических объектов обычными астрофизическими методами. Это связано, в частности, с тем, что гравитационные поля видимых звезд или скоплений звездной пыли, по-видимому, недостаточны для создания условий из движения по наблюдаемым нами траекториям. Имеется как бы «скрытая» от наблюдателя масса. Э. Уитмен в 1984 г. высказал предположение, что эта «скрытая» масса состоит из материи, содержащей уже упомянутый S-кварк. Он как раз и называется странным кварком. Предполагается, что эта материя из странных кварков возникла в течение первой миллионной доли секунды после БВ, причем диаметр таких образований составлял от 10 -7 до 10 см, масса от 10 9 до 10 18 г, а число кварков от 10 33 до 10 42 . Из-за малых размеров и огромной плотности вещества (например, теннисный мяч из такой же материи весил бы 10 12 тонн) оно не проявляет себя в видимом диапазоне световых волн.

Для такого космологического объекта американским физиком Уилером в 1969 г. был предложен термин «черная дыра» (ЧД). ЧД - это объект, у которого такое большое гравитационное поле, что он ничего (в том числе и излучение) от себя не отпускает. Наступает факт «пленения» света. Кстати, еще в 1798 г. Лаплас говорил об объектах с огромной гравитацией, которые будут абсолютно черными для внешнего наблюдателя. ОТО показывает, что для таких полей масса объекта М должна соответствовать так называемому гравитационному радиусу R или радиусу сферы Шварцшильда, который первый решил уравнение Эйнштейна для поля тяготения сферического тела:

Этим расстоянием будет определяться горизонт событий. Для Солнца гравитационный радиус равен 3 км, для Земли - 1 см. Однако ни Солнце, ни Земля до таких размеров самопроизвольно не уменьшатся.

Предполагаются два варианта образования ЧД в процессе эволюции звезд. Первый - для звезд с массой больше двух масс нашего Солнца. По мере старения звезды ядерное топливо (водород) сжигается и гравитационное притяжение уже не может уравновеситься давлением за счет горения топлива. Звезда сжимается и превращается в ЧД. Второй - для малых звезд массой значительно меньшей массы Солнца. В начальные моменты жизни Вселенной плотность материи огромна, и малые неоднородности вещества создавали большие неоднородности гравитационного поля, это могло приводить к образованию ЧД в малых областях пространства. Кстати, по одной из гипотез, Тунгусский метеорит - микрочерная дыра (по космическим масштабам), «вошедшая» в Землю в районе поселка Ванавара в Сибири и «вышедшая» из нее в районе Бермудских островов («Бермудского треугольника»).

Наличие такого огромного гравитационного поля у ЧД приводит к тому, что время течет все медленнее и медленнее по мере приближения к ЧД. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленного наблюдателя, т.е. ЧД искривляет пространство и тормозит время. Как отмечал Б. Паркер, «Попав в ЧД, наш наблюдатель не сможет сообщить о том, что видит: он все время будет приближаться к ее центру... в центре будет находиться то, что осталось от звезды после коллапса - сингулярность (нулевой объем). По мере приближения к сингулярности наблюдатель заметит, что пространство и время поменялись ролями. По «нашу» сторону горизонта событий мы можем управлять пространством, но не временем: время течет одинаково независимо от наших действий. Но за горизонтом, как ни странно, можно управлять временем, но не пространством - нас затягивает сингулярность, хотим мы этого или не хотим. Оказавшись с ней рядом, мы поймем, что нас ждет та же судьба, что и звезду - нас сожмет до нулевого объема». В этом смысле ОТО описывает звезду как «кладбище» всего того, что ЧД успела захватить.

Кто бы мог подумать, что мы
будем так много знать и так
мало понимать.

А. Эйнштейн

Раз мы заговорили о попытках единого описания всех физических явлений, следует вкратце упомянуть о моделях единого физического поля (ЕФП). Такие попытки неоднократно предпринимались, начиная с Эйнштейна. Хотя до настоящего времени этой теории нет, можно отметить, что С. Вайнберг, Ш. Глэшоу и Э. Салам в 1967 г. показали, что слабое и электромагнитное взаимодействия есть одно и то же электрослабое (так они его назвали) взаимодействие, проявляющееся при энергиях свыше 100 ГэВ. При меньших энергиях спонтанно нарушается симметрия между ними, и в обычных условиях мы наблюдаем их как разные поля и взаимодействия. Ш. Глэншоу и Г. Джордан в 1979 г. предположили, что при энергии свыше 10 14 ГэВ слабое, электромагнитное и сильное взаимодействия также объединяются. Это так называемая первая теория Великого объединения (ТВО). По этой теории лептоны могут переходить в кварки и наоборот.

Однако, как мы помним, кварки имеют барионный заряд, не равный нулю, а у лептонов В = 0. Следовательно, здесь уже при таких превращениях нарушается закон сохранения барионного заряда. Кроме того возникает вопрос, насколько стабилен протон, время жизни которого составляет порядка 10 30 -10 32 лет. По сравнению с временем существования Вселенной (~10 10 лет) это время жизни протона значительно больше, чем возраст нашей Вселенной.

Если это действительно так, то возникает гипотеза, что вещество во Вселенной может быть не стабильно. Кроме того ТВО «разрешает» существование в свободном состоянии кварков, и тогда они действительно являются фундаментальными частицами. И наконец, при энергиях свыше 10 19 ГэВ возможно включение в общую схему объединения взаимодействий и гравитационных полей. Это и есть модель (или теория) супергравитации или суперсимметрии. Здесь происходит объединение симметрии ОТО. Частицами-переносчиками должны быть безмассовые частицы со спином s = 2, называемые гравитонами, о которых мы уже упоминали.

Физический вакуум порождает виртуальные (возможные) частицы, которые своей массой создают дополнительное поле тяготения. Согласно ОТО, в этом же месте и в тот же момент времени изменяются геометрические свойства пространства-времени, т.е. оно флуктуирует. Согласно такой модели, гравитон - это квант флуктуирующего пространства-времени, объединяющий в себе и элементарную частицу, и волну искривления, распространяющуюся по четырехмерному миру. Эффекты, связанные с этим, должны проявляться на так называемых планковских расстоянии и времени , соответствующая масса . Индекс «р» обозначает, что эти параметры - соответствуют планковским расстоянию, времени и массе. Отсюда делается вывод, что в ранние моменты существования Вселенной пространство-время было дискретным, квантованным, как это следует из физического смысла константы Планка.

Волну искривления пространства связывают в теории супегравитации с моделью суперструн. В этой модели в качестве элементарной основы мира берутся уже не описанные элементарные частицы, а элементарные процессы - колебания бесконечно длинных струн с очень малым диаметром. При этом могут возникать резонансы колебаний разных струн и вихри в пространстве, которые можно связать с ритмикой Космоса, циклическими процессами во Вселенной, оказывающими влияние на все процессы на Земле .

В теории супергравитации также показывается, что, согласно Т. Калуце (1921 г.) и О. Клейну (1926 г.), электромагнитное поле можно рассматривать как некое геометрическое свойство дополнительного пятого измерения пространства-времени. Не вдаваясь в теоретические тонкости, отметим, что это ненаблюдаемое пятое измерение сворачивается (компактифицируется) до малых ненаблюдаемых размеров. Это приводит к геометрическим симметриям, связанным с семью дополнительными измерениями пространства, компактифицированными в семимерную сферу. Тогда можно предположить, что мы живем в 11-мерной Вселенной. Это - три видимых пространственных измерения, семь невидимых, свернутых в пространстве, и время. Таким образом, новая и последняя на сегодняшний день в теоретической физике безразмерная константа - размерность Вселенной N = 11.

Свертка ненаблюдаемого измерения может быть качественно понята из приведенного примера бесконечно длинной струны, которую мы видим в одном измерении - длине. Микрообъекты рассматриваются уже не как точечные, а как одномерные. Исчезновение размерности можно также увидеть при свертывании плоского листа в цилиндр или в ленте Мебиуса, в которой происходит непрерывный переход с внешней поверхности листа на внутреннюю.

В связи с теорией ЕФП в настоящие время рассматривается также возможность существования кванта единого пространства-времени, который называется st (space - time)-квантом :

(1.6.10)

Если st-квант действительно существует, то это приводит к интересным выводам: в «объеме» st-кванта нарушены причинно-следственные связи. События, происходящие в st-кванте могут быть растянуты во времени, но сжаты в пространстве и наоборот. На уровне st-кванта пространство-время непрерывно творит само себя с изменяющимися в каждом акте топологией, физическими свойствами и законами из-за неопределенности пространства-времени. Спонтанные флуктуации пространства-времени могут привести к нарушению закона сохранения энергии. Предполагается, что в эти особые моменты, по-видимому, и произошел БВ. И наконец, существует возможность существования непрерывного множества виртуальных вселенных.

Существуют и другие попытки описать многомерность пространства, представить его расслоенным и даже мнимым в окрестностях черных дыр, когда объект пересекает сферу Шварцшильда . При этом частица, не наблюдаемая в одном пространстве, может наблюдаться в другом, и поэтому частицы тахионы, движущиеся со скоростями, большими скорости света, и тардионы, движущиеся со скоростями, меньшими скорости света, существуют в разных расслоенных пространствах, и принцип причинности не нарушается. Имеется также гипотеза Ю. Иванова о частотном пространстве . Согласно этой модели трехмерному геометрическому пространству сопоставляется сферическое частотное пространство, шаровыми слоями которого являются: не видимая человеческим глазом ультрафиолетовая область (УФ) спектра, видимая область спектра (оптический диапазон), невидимая инфракрасная область (ИК) спектра (рис.
). Тогда появление неопознанных летающих объектов (НЛО), «материализацию» или, наоборот «дематериализацию» различных физических объектов Ю. Иванов объясняет переходом из одного частотного пространства в другое. В связи с такой гипотезой предполагается, что рядом с нами в УФ- и ИК-областях частотного пространства процессы, в том числе и само время, могут протекать по-иному и, следовательно, может существовать другая, быть может, разумная жизнь.

Другой ультрасовременной моделью строения пространства является попытка заполнить его кубами с планковскими размерами, внутри которых каким-то образом вращаются взаимно противоположно петли времени С. Хокинга, переходы между которыми в известном смысле, и соответствуют переходам от одного пространства к другому. Все эти модели, конечно, являются умозрительными и требуют дальнейшего доказательства и экспериментального подтверждения. Как сказал Р. Фейнман, «многие физики трудятся над создание великой картины, объединяющей все в одну сверхмодель. Это восхитительная игра, но в настоящее время игроки никак не договорятся о том, что представляет собой эти великая картина».

В связи с уже упомянутой ранее «подгонкой» мировых констант встает вопрос не только о пределах изменения их значений в отдельности, но и об изменении в целом всего набора этих констант, позволяющем судить об устойчивости структуры Вселенной.

Следует заметить, что с общечеловеческой точки зрения разумным ограничением изменения набора констант в целом является сохранение условий для возникновения и существования жизни. Попыткой ответа на вопрос, что же определяет столь точную «подгонку» мировых констант, что реализует существование сложной структуры Вселенной и образование жизни вообще, стало применение скорее гуманитарного, чем естественнонаучного антропного принципа (АП), согласно которому наша Вселенная обладает наблюдательными свойствами именно потому, что эти свойства допускают возможность существования наблюдателя, т.е. человека.

Антропный принцип впервые в 1958 г. был предположен нашим соотечественником Г. Идлисом и затем Б. Картером в 1974 г., но в неявном виде он уже функционировал и раньше в виде антропоморфизма. Этот принцип применяется в слабом и сильном вариантах.

Слабый антропный принцип . На свойства Вселенной накладываются ограничения наличием нашей разумной жизни. То, что наблюдают астрономы, зависит от присутствия наблюдателя.

Сильный антропный принцип . Свойства Вселенной должны быть такими, что бы в ней обязательно была жизнь.

Согласно этим принципам между фундаментальными свойствами Вселенной и возможностью существования в ней жизни установлены строго определенные отношения. Как мы уже отмечали, фундаментальные свойства мира количественно выражаются через фундаментальные постоянные и при их незначительном изменении может сильно измениться сценарий развития Вселенной, а теперь мы можем сказать, что и самой жизни во Вселенной, естественно, в нашем понимании. Таким образом, антропный принцип по сути превращает факт появления человека во Вселенной из случайного, незначительного, в центральный, приоритетный. «Любая физическая теория, которая противоречит существованию человека, очевидно, не верна» .

Заметим также, что антропный принцип не отвергает возможности существования других Вселенных. Однако эволюция может происходить без наблюдателей, и, следовательно, жизнь в нашем понимании в них невозможна. При использовании антропного принципа появляется возможность моделировать другие допустимые Вселенные, что, с точки зрения современной физики, доказывает существование множества миров.

Кроме того, АП приводит к мировоззренческим уточнениям не только по множественности обитаемых Вселенных, но и по множественности существования жизни в нашей Вселенной. Как справедливо указывалось в , вопрос о существовании жизни в нашей Вселенной в свете антропного принципа приобретает новую окраску. Он означает, что наша Вселенная чрезвычайно тонко приспособлена для возникновения и существования жизни. Можно было бы подумать, что это относится к отдельной достаточно крупной, но все же локальной области Вселенной, где в силу случайной флуктуации создались условия, необходимые для существования жизни. Но как мы уже говорили, предполагается, что Вселенная однородна и изотропна, т.е. ее свойства в больших масштабах одинаковы. Следовательно, когда мы говорим о чрезвычайно тонкой приспособленности Вселенной для жизни, речь идет не о локальных областях, а обо всей Вселенной в целом. Таким образом, применение АП приводит к выводу о закономерном возникновении и широкой распространенности жизни и Разума во Вселенной. Антропный принцип, с точки зрения физики и философии, «отвергает» возможность уникальности земной жизни. Проблемы множественности миров неоднократно обсуждались на всех этапах человеческого общества. Например, Анаксагор выступил с идеей о гониометриях, каждая из которых содержит в себе все свойства Вселенной. Другой пример признания множественности миров дает нам Джордано Бруно, сожженный, как известно, инквизицией за эту идею.

В современном естествознании к этой идее приводит ОТО, одним из выводов которой является представление, что наш мир снаружи может выглядеть как микрочастица. Такие объекты наш соотечественник А.А. Марков назвал фридмонами. Дальнейшее развитие идей о множественности миров привело к пониманию, что Земля находится не в центре Солнечной системы. Х. Шекли показал, что и Солнце находится не в центре Галактики, а вблизи ее края. Хаббл и другие исследователи установили, что наша Галактика не только не является центром Вселенной, но и более того, у нашей Вселенной вообще нет пространственного центра - все ее точки эквивалентны. Как уже упоминалось, совсем недавно мы стали понимать, что состоим не из основной материи Вселенной. А расширение Вселенной на ранних стадиях означает, что наша Вселенная - не единственный из раздувшихся «шариков» (Помните наш пример с воздушными шариками?).

Анализ современных теорий физики элементарных частиц, данных астрофизики и космологии показывает необходимость одновременного выполнения некоторых соотношений относительно мировых констант в дополнение к упомянутым уже формулам (1.6.4 - 1.6.7):

(1.6.11)

Это само по себе в обычном понимании довольно противоречиво. Если, согласно , изобразить на плоскости Х, Y, где и , эти неравенства графически, то получается, что неравенствам (1.6.11) удовлетворяют две области (рис.
), соответствующие устойчивым структурам Вселенных. В области 1 образование сложных структур и жизни невозможно, так как минимальная масса в ней - порядка массы протона (m ~10 -5 г).

В области 2 будут выполняться условия для существования нашей Вселенной. В области 3 значения фундаментальных констант отличны от наших, но там тоже могут возникать сложные структуры. Однако зоны, где соблюдаются условия (1.6.11), соответствующие возникновению и наличию жизни, занимают предположительно незначительную часть области 3.

Заметим также, что фундаментальные константы играют важную роль в построении масштабов нашего мира. Они позволяют дать некую иерархическую картину структуры Вселенной. Это можно пояснить графически представлениями изменения размеров тел и расстояний, а также их масс (рис.
,
). Действительно, наиболее естественными и наглядными квалификационными признаками являются размер объекта и его масса. Выделяют микромир с характерными размерами меньше, чем 10 -8 м (элементарные частицы, ядра, атомы, молекулы), макромир (макромолекулы, кристаллы, жидкости, газы, живые организмы, человек, объекты техники, т.е. макротела) и мегамир (планеты, звезды, галактики). Понятно, что границы микро- и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов и в основе макро- и мегаявлений лежат микроявления. И это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро- и мегаразмеры объектов соотносятся друг другу как макро/микро » мега/макро.

Кварки «являются» составной часть протонов и нейтронов, затем из них образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале разномерности тел, то мы приходим у обычным макротелам и далее - планетам и их системам, звездным скоплениям, галактикам и метагалактикам, т.е. можно представить переход от микро, макро и мега как в размерах, так и физических процессах (моделях). И именно фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего Мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро- и мегаструктур и в целом высокоорганизованных форм живой материи. Имеющая место «подгонка» мировых констант, т.е. определенные их значений и взаимоотношений между ними, по существу и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема казалось бы абстрактных мировых констант имеет глобальное мировоззренческое значение.

Антропный принцип требует также, чтобы средняя плотность вещества Вселенной ρ ср была бы близка к критической ρ кр" , так как при время существования нашего Мира было бы настолько мало, что за это время жизнь не могла бы возникнуть. Такой взгляд коррелирует с моделью развития Вселенной, построенной на положениях классической динамики Ньютона.

Рассмотрим теперь механизм зарождения и развития звезд, а также в связи с этим классификацию звезд и методы их наблюдения. Мы уже отмечали, что согласно гамовской модели БВ все элементы Вселенной образовались в результате термоядерных реакций. Остановимся на этом подробнее. При конденсации звезды из облака межзвездных газа и пыли высвобождается гравитационная потенциальная энергия. Часть этой энергии расходуется на излучение, а остальная часть преобразуется в кинетическую энергию конденсирующих атомов, и, таким образом, повышается температура звезды. При температурах Т ~ 10 7 К и плотности ~ 100 г/см 3 начинаются термоядерные реакции, которые могут идти в зависимости от первоначального состава межзвездной пыли и, следовательно, звезд по двум схемам или цепочкам. Большинство звезд состоит в основном из водорода (60-90% по массе), гелия (10-40%) и тяжелых элементов (0,1-3%). Звезды, в состав которых входят кроме водорода и гелия тяжелые элементы, выброшенные при вспышках так называемых новых или взрывах сверхновых звезд, называются звездами населения I.

Новыми звезды называются потому, что в древности предполагалось, что это действительно новые звезды и до взрыва их нельзя было видеть. На самом деле в некоторых звездах возникают неустойчивости, происходит извержение вещества в пространство и светимость ее резко увеличивается. Частота извержений изменяется от нескольких месяцев до лет. У остальных звезд извержения бывают примерно раз в 1000 лет. Сверхновые звезды фактически связаны со взрывом массивной звезды, что бывает один раз в несколько столетий. За 10 последних веков обнаружено 7 сверхновых звезд. Интенсивность излучения сверхновых звезд в 10 4 раз больше, чем у новых. Наше родимое Солнце с 74% Н, 24% Не и 2% тяжелых элементов есть обычная звезда населения I. Звезды населения II образовались из первичного водорода и гелия и в основном содержат гораздо меньше остаточного материала других звезд. Они содержат много водорода, мало гелия и очень мало тяжелых элементов.

В первой термоядерной реакции, происходящей при конденсации из межзвездной пыли, участвует лишь водород. При достижении указанных температур и плотностей газа происходит реакция слияния (присоединения) двух протонов в результате слабых взаимодействий:

где D 2 - дейтерий, β + - позитрон, v e - нейтрино.

Заметим, что мог бы образоваться изотоп He 2 , но его в природе не обнаружено. Как только в результате реакции (1.6.18) образуется D 2 , начинаются еще две дополнительные реакции:

первая (1.6.19)

и за ней вторая с участием двух ядер He 3

Конечным результатом этой последовательности реакции, которая называется протон-протонной цепочкой, является превращение четырех атомов водорода в один атом гелия (рис.
). фотоны) характеризует более холодное вещество.

В целом фотоны оказывают радиационное давление на внешний слой звездного газа. Как нам уже известно из ОТО, масса m обладает энергией Е = mc 2 . И, наоборот, энергии Е соответствует определенная масса m. Следовательно, электромагнитное излучение с энергией Е обладает эквивалентной ей массой m = Е/c 2 . И поскольку электромагнитное изучение распространяется со скоростью света с, то оно имеет и импульс, согласно (3.8) = mc = E/c, и, следовательно, оказывает радиационное давление. В равновесии действующее на любой малый объем звездного вещества давление, обусловленное гравитацией, уравновешивается радиационным давлением. Как только термоядерные реакции обеспечивают достаточное излучение для того, чтобы уравновесить направленную внутрь гравитационную силу, сжатие звезды прекращается. Тем самым мы снова приходим к пониманию пульсирующей теперь уже звезды, как раньше в целом Вселенной.

Если в звезде имеется некоторое количество углерода, то может осуществиться еще одна цепочка реакций, в результате чего также происходит превращение водорода в гелий, а углерод служит как бы катализатором:

(1.6.21)

Таким образом, согласно (1.6.21) три протона захватывают в следующих друг за другом реакциях (ρ, γ) и β-распадах. А после захвата четвертого протона и излучения α-частицы вновь образуется ядро C 12 . Конечный результат этой цепочки тот же, что и в рассмотренной протон-протонной: превращение четырех атомов водорода в один атом гелия. Так как в этой последовательности участвуют и образуются атомы углерода и азота, то ее и называют углеродо-азотным циклом . Если в состав звезды входит углерод и температура выше 2 ×10 7 К, то основным источником энергии является углеродно-азотный цикл. Более массивные и яркие, и поэтому более горячие, звезды выделяют энергию за счет углеродно-азотного цикла. Примером таких звезд является одна из самых ярких звезд северного полушария - Сириус. Основным источником энергии Солнца служит протон-протонная цепочка.

Не останавливаясь далее на деталях физики процессов в звездах, заметим, что в результате других ядерных реакций, в том числе с участием нейтронов (а это образование элементов с атомным номером больше 82), могут образовываться и тяжелые элементы. При реакции образования углерода из трех атомов гелия наблюдается также процесс выгорания гелия по следующей цепочке:

Рассмотрим теперь процесс эволюции звезд. Итак, звезды конденсируются из межзвездной пыли, возникают термоядерные реакции, звезды разогреваются, сжигают свое ядерное горючее и гибнут, взрываясь в виде сверхновых, или просто угасают, превращаясь в куски ядерного пепла. О взаимоотношениях гравитационного и радиационного давлений мы уже говорили. Если эти давления уравновешиваются, то звезда стабилизируется и приобретает характерные для нее размеры и светимость. Астрономы установили, что для того, чтобы проследить за эволюцией звезд, достаточно знать две величины, которые сравнительно легко измерить: собственную светимость и цвет, характеризующий температуру поверхности. Поэтому можно построить в этих координатах зависимость светимости от цвета, и поскольку каждая звезда в любой период жизни имеет определенную светимость и определенный цвет, то она будет точкой на этой диаграмме. Так как звезды разные по времени своего развития, то можно сказать, что в течение жизни звезды точка, ее представляющая, движется по этой диаграмме, описывая некую кривую. Таким образом можно проследить процесс жизни и угасания звезды.

Если же говорить о конкретной динамике поведения звезды, то она зависит только от двух факторов: массы вещества, из которого она конденсировалась, и состава этого вещества. В начальный период жизни звезды играет роль только ее масса. Если сравнивать динамику звезд, химический состав которых подобен составу Солнца, т.е. звезд населения I, то окажется, что на протяжении большей части своей истории эти звезды занимают положения вблизи так называемой главной последовательности (рис. ). Начальное положение звезды зависит от ее массы: более массивные звезды оказываются более горячими и яркими, менее массивные звезды холодные и тусклые. Так как большую часть своей жизни звезда стабильна, диаграмма цвет - светимость для любой группы звезд представляет собой распределение точек вдоль главной последовательности. Однако на этой диаграмме будут наблюдаться и отклонения от главной последовательности. Это связано с начальным составом и массой звезды и ее переходом из одного типа к другому. Солнце перемещается вдоль главной последовательности уже 4,5 ×10 9 лет и будет продолжать это движение дальше 5 ×10 9 лет, а затем перейдет к последним этапам своей эволюции. Более массивные звезды проходят этот путь быстрее, поскольку они расположены на главной последовательности более высоко и время прохождения цикла составляет ~10 7 лет. По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии и поэтому светимость звезды возрастает.

С другой стороны, увеличение энергии приводит к увеличению радиационного давления на внешнем слое звезды, и внешние слои расширяются. В результате этого расширения газ охлаждается, излучаемый свет становится более красным и звезда резко смещается от главной последовательности (рис.). Этот процесс расширения и покраснения идет до тех пор, пока диаметр звезды не увеличится в 200-300 раз, и звезда становится красным гигантом. Примером красного гиганта является звезда Бетельгейзе из созвездия Ориона. Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате гигантского расширения поглотит ее останки. Однако заметим, что по расчетам астрономов до этого момента пройдет около 5 миллиардов лет. Время пребывания обычной звезды в виде красного гиганта составляет около 10 7 лет.

Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость - цвет. Этот переход от красного гиганта до пересечения с главной последовательностью составляет примерно 1% от всего времени существования звезды. Солнце, например, пройдет эту эволюцию за 100 миллионов лет. В этот период у большинства звезд нарушается равновесие и они начинают пульсировать, изменяя свою светимость. Это так называемые переменные звезды. Далее эволюция идет в зависимости от массы звезды. Если она меньше 1,4 солнечной массы («легкая» звезда), то при израсходовании ядерного горючего звезда смещается вниз на диаграмме светимость - цвет и в конце концов она охлаждается и угасает. Но при этом она проходит через стадию неустойчивости и происходят периодические извержения и возрастания светимости. Это и есть уже упомянутая стадия новой звезды, которая постепенно переходит в стадию белого карлика, еще более охлаждаясь - красного карлика, и наконец - черного карлика. Эволюция звезды, масса которой больше 1,4 солнечной массы, кончается эффектным гигантским взрывом и это - рождение сверхновой звезды.

Голдом была предложена модель, согласно которой пульсар - это вращающаяся нейтронная звезда. Время жизни пульсара - 108 лет. Механизм возникновения переменного излучения по этой модели состоит в следующем. Электроны и протоны захватываются сверхсильным магнитным полем звезды. Вместе со звездой вращаются магнитное поле и захваченные им частицы (рис.
). Вблизи внешней границы плазмы, которая удерживается этим магнитным полем, частицы движутся со скоростями, близкими к световой. Согласно квантовой электродинамике, они испытывают ускорение и, следовательно, излучают. Это ускорение очень большое, и интенсивность излучения поэтому велика. Следствием релятивистского характера движения частиц является то, что излучение в основном испускается вдоль направления движения частиц. Поскольку вращение происходит вместе с магнитным полем звезды, то она излучает как «прожектор», луч которого обегает небо. При каждом обороте пульсара на Земле наблюдается вспышка.

Черную дыру или слиянии двух черных дыр. При этом выделяется гигантская энергия порядка 10 46 -10 47 эрг в области 10-100 км за время около секунды.

В ноябре 1999 г. в научной печати появилось сообщение об экспериментах на релятивистском коллайдере (ускорителе-сталкивателе тяжелых ионов, в котором частицы разгоняются до скорости, равной 0,99 скорости света) в Брукхевенской национальной лаборатории (США) по получению кварк-глюонной плазии, т.е. такого состояния вещества Вселенной, в котором она находилась в первые мгновения после БВ. Другими словами, можно рукотворно на Земле осуществить этот Большой Взрыв! Это вызвало неоднозначную реакцию даже среди профессионалов-физиков.

Дело в том, что в таких условиях как раз может возникнуть материя из «странных» кварков, начнется неконтролируемая реакция по превращению всей нашей «земной» материи в «странную материю», в новое состояние со сверхплотным веществом и температурой в триллион градусов, и в итоге может образоваться черная дыра. Если теоретики не ошибаются, что рождению Вселенной предшествовал БВ, а экспериментаторы могут воссоздать его на Земле, то об успешности такого моделирования судить уже придется не нам!

Мы уже говорили в связи с проблемой CETI, что молчание далеких цивилизаций и вспышки сверхновых звезд приводят к мысли, что, вероятно, на каком-то уровне знаний уже находились энтузиасты, которым не терпелось побыстрее узнать правду о зарождении Вселенной и даже посоревноваться с природой. Результатом такой спешки и могли быть очередные черные дыры во Вселенной.

В связи с классификацией звезд и происходящих в них атомных и ядерных процессов и испусканием различных излучений остановимся кратко на неоптических методах наблюдений астрофизических объектов. Эти методы наблюдений возникли из-за того, что видимый свет, как мы видели на примере «скрытой» массы, несет не всю информацию о том, что происходит в Космосе. Инфракрасное и рентгеновское излучение сильно поглощаются атмосферой Земли. Нейтрино вообще слабо взаимодействует с веществом. Поэтому для исследования инфракрасного и рентгеновского излучений используют ракеты и спутники, а для наблюдения нейтрино строят глубокие шахты, чтобы максимально защитить детекторы от фона. Например, такая лаборатория до недавнего времени была у нас в Баксанском ущелье на Кавказе. Имеются также проекты использования для этой цели толщи вод Байкала. Правда особых успехов в регистрации нейтрино пока нет. Методами радиоастрономии были обнаружены радиоисточники в нашей галактике, часть которых (около 200) удалось отождествить с видимыми галактиками или звездами. Первый внегалактический источник, расположенный в созвездии Лебедь, обнаружен в 1948 г.

В начале 60-х годов были обнаружены такие радиоисточники, которые оказались связанными не с обычными радиогалактиками, а с необычными голубого цвета объектами, напоминающими звезды. Так как они малы по сравнению с размерами галактик, их назвали квазизвездными объектами или кратко квазарами. Природа их происхождения и строения в настоящее время не ясна. Однако, наблюдая их спектры, обнаружили у них исключительно большие красные смещения. А это, как нам уже известно, связывается с расширением Вселенной. Поэтому можно предполагать, что квазары - наиболее удаленные и быстродвижущиеся объекты во Вселенной. Кроме того, чтобы отдельная квази-звезда имела яркость квазара, она должна излучать фантастическое количество энергии, коло 10 46 -10 47 эрг/с, что в 10 12 -10 13 раз превышает энергию излучения Солнца. В таких условиях квазар за месяц должен испускать количество энергии, соответствующую массе Солнца. Для объяснения такой огромной мощности расхода энергии квазары должны иметь массу, в 10 9 раз превышающую массу Солнца.

На основе изложенных выше положений постнеклассической физики можно сделать некоторые обобщения относительно эволюции Вселенной. В современном представлении пространство не есть однородное и изотропное пустое вместилище материальных объектов, как это предполагалось в классическом естествознании. Пространство взаимодействует с материальными объектами, находящимися в нем, и искривляется вблизи гравитирующих масс. Гравитационное поле выступает как искривление четырехмерного пространства-времени, и в упомянутой модели геометродинамики искривление пространства сложной топологии порождает все многообразие материального мира.

Заметим также, что в теории раздувающейся Вселенной (РВ), связанной, как мы говорили, с возникновением материального мира из знания, мы не должны «навязывать» Природе свои законы, удобные и понятные нам, может быть, не свойственные природе. Используя не опровергнутые физические законы, разрабатывая новые модели, мы приходим на новом витке знаний к пониманию того, что наш мир холистичен и познавать его надо с этих позиций.

Что касается физики Вселенной, то можно сказать, что в настоящее время мы имеем о ней некоторые представления, накопили много сведений о конкретных физических явлениях, тем не менее ощущается, что вопросов больше, чем ответов. Постановка важного и правильно сформулированного вопроса означает шаг по пути познания законов Природы, так как мы начинаем понимать, в каком направлении нам двигаться и как искать эти ответы. Несомненно, в будущем мы получим еще больше ответов, в том числе и на те вопросы, которые мы здесь кратко обсуждали, но, естественно, что мы встретимся и с новыми фундаментальными проблемами. Однако в этом - сущность научного познания мира, в том числе и на основе физики. В этом и очарование той же физики.

Космология: открытия и загадки

Космология – особая наука. Ее предмет – вся Вселенная, рассматриваемая как единое целое, как физическая система с особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел и физических полей. Размеры наблюдаемой Вселенной приблизительно 10 миллиардов световых лет. Это самый большой по пространственному масштабу объект науки. К тому же он существует в единственном экземпляре. В этом отношении космология, очевидно, сильно отличается от других естественнонаучных дисциплин. Но, как и в любой науке, главное в космологии – надежно установленные факты, достоверные сведения о реальных объектах, процессах и явлениях. В статье известных российских астрофизиков рассказывается о четырех крупнейших открытиях в космологии и трудных загадках этой науки – как старых, так и совсем свежих, которые еще предстоит разрешить

Чем дальше, тем быстрее

Современная космология берет начало в первые десятилетия ХХ века. В 1915-1917 гг. американский астроном Весто Слайфер обнаружил, что галактики (которые тогда называли туманностями) не стоят на месте, а движутся в пространстве, причем большинство из них удаляются от нас. Этот вывод следовал из наблюдений спектров галактик: их движение проявляло себя в сдвиге спектральных линий к красному концу спектра.

Такого рода красное смещение , которое можно интерпретировать как давно известный в физике эффект Доплера, имеет, как впослед­ствии оказалось, всеобщий характер: оно наблюдается у всех галактик во Вселенной. Исключение составляют только самые близкие к нам звездные системы, например, знаменитая туманность Андромеды и другие (менее крупные) галактики, находящиеся на расстояниях, не превышающих примерно 1 мегапарсек (1 Мпк ≈ 3,26 млн световых лет). Если расстояния больше 1 Мпк, то галактики, по выражению Слайфера, «разбегаются в пространстве».

В 1929 г. другой американский исследователь, Эдвин Хаббл, которого нередко называют величайшим астрономом ХХ в., определил, что движение разбегающихся галактик следует простому закону: скорость V удаления от нас галактики пропорциональна расстоянию R до нее: V = H R. Это соотношение между скоростью и расстоянием называют сейчас законом Хаббла , а коэффициент пропорциональности H – постоянной Хаббла. Величина H постоянна в том смысле, что она одинакова для всех галактик и не зависит ни от расстояния до галактики, ни от направления на нее на небе. По современным данным, значение постоянной Хаббла лежит в пределах от 60 до 75 км/с на мегапарсек.

Эдвин Хаббл (1889-1953), Астроном Обсерватории Маунт-Вилсон в Калифорнии, Наблюдал галактики с помощью самого мощного в его время Телескопа Диаметром 2,5 м. В 1929 г. он установил количественную закономерность в Явлении Разбегания Галактик (Закон Хаббла)

Удаление галактик по закону Хаббла наблюдают сейчас вплоть до расстояний в несколько тысяч мегапарсек. Если галактика находится на расстоянии, скажем, 1000 Мпк, то она движется от нас прочь со скоростью 60-75 тыс. км/с. Это огромная скорость, которая лишь в 4-5 раз уступает скорости света. Всеобщее разбегание галактик - самый грандиозный феномен природы.

Открытия Слайфера и Хаббла, а также дальнейшие исследования заложили наблюдательную основу, на которой строится и развивается вся современная космология. Мы знаем теперь, что живем в огромном мире, который к тому же расширяется со временем. Расширение началось около 14 млрд лет назад; этот гигантский промежуток времени и считается возрастом мира. А событие, которое породило космологическое расширение, называют Большим Взрывом .

Но какова физическая природа Большого Взрыва? Откуда взялись у галактик огромные скорости разбегания? Что заставило их стремительно удаляться друг от друга? На эти вопросы не смогли ответить ни знаменитые астрономы-наблюдатели, основатели космологии, ни великие физики, начиная с Эйнштейна. Нет ответа на них и у космологов наших дней. Возможно, это самая трудная и самая не поддающаяся разрешению загадка из когда-либо возникавших в естественных науках. Мы не знаем, с чего, собственно, началось космологическое расширение, не имеем представления о физике, которая могла бы за этим стоять. Не известно даже, как нужно ставить задачу о причине космологического расширения. Тем более ничего нельзя сказать о том, что было до этого события, и даже не вполне понятно, что значит здесь «до».

И тем не менее сама возможность расширения мира была предсказана русским математиком Александром Фридманом, классиком мировой науки. Пользуясь теорией Эйнштейна, Фридман разработал в 1922-1924 гг. физико-математическую модель мира, который находится в состоянии общего расширения. Прямым следствием этой модели является закон пропорциональности скорости и расстояния, который и был открыт в наблюдениях Хаббла. Космологическая модель Фридмана – теоретическая база современной космологии. Эта модель в сочетании с данными астрономических наблюдений очень хорошо описывает динамику космологического расширения. Конечно, не с «самого начала», о котором ничего не известно. Но замечательно, что теория Фридмана справедлива сразу же после первой секунды космологического расширения. Кроме этой первой секунды, вся дальнейшая история мира нам известна; более того, эта теория говорит и о будущем Вселенной: она предсказывает, что космологическое расширение будет продолжаться неограниченно долго.

Лишний вес Вселенной

В 1933 г. швейцарско-американский астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны быть еще невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик Кома в созвездии Волосы Вероники – крупное образование, содержащее тысячи звездных систем, подобных туманности Андромеды или нашей Галактике. Галактики движутся в этом скоплении со скоростями, достигающими 1000 км/с. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик. Для этого необходимо более сильное тяготение, и, согласно подсчетам Цвикки, требуются дополнительные массы, которые примерно в 10 раз больше суммарной видимой массы галактик скопления.

Позднее, в 1970-х гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках. Яан Эйнасто, Вера Рубин, Джеремайя Острайкер, Джим Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало галактик. Дело в том, что можно измерить зависимость скорости вращения спиральных галактик от расстояния до центра (кривая вращения ), которое прослеживается как внутри звездной системы, так и вне ее (по движению облаков нейтрального водорода). В области вне видимого диска галактики кривая вращения становится, как правило, плоской, т. е. практически не зависит от расстояния. Во всех случаях ход этой «плоской» зависимости указывает на присутствие скрытой материи и внутри звездной системы, и вне ее, причем масса невидимой материи в гало в 3-10 раз больше массы галактики.

Эти гало имеют почти сферическую форму, их радиусы в 5-10 раз превышают размеры самих звездных систем. Такие крупные галактики, как, скажем, туманность Андромеды или наша Галактика, состоят из звездного диска, погруженного в распределение невидимой массы, которое простирается на расстояния до 100 кпк. Эти темные гало, как и дополнительные массы у Цвикки, проявляют себя исключительно тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей .

Другие интересные эмпирические данные, подтверждающие существование темной материи, связаны с эффектом гравитационной линзы . Скопления галактик создают эйнштейновский эффект отклонения света полем тяготения. Источником света служат в этом случае далекие галактики и квазары. Изображения галактик искажаются при прохождении их света в гравитационном поле скопления, служащего своеобразной гравитационной линзой. Различают сильное и слабое линзирование. При сильном линзировании искажение столь значительно, что появляется несколько изображений источника. Это происходит, когда угловое расстояние между линзой и источником относительно невелико. При сравнительно больших угловых расстояниях искажение не так значительно (слабое линзирование), и оно сводится к изменению видимой формы источника, но уже без дробления его изображения. В обоих случаях этот эффект дает указание на массу скопления, служащего гравитационной линзой. Изучая такие искажения для сотен тысяч и миллионов далеких галактик, можно получить сведения о величине и распределении массы в скоплениях-линзах. Наблюдения такого рода неизменно указывают на то, что скопления содержат большие скрытые массы.

Открытие темной материи – второе (после открытия космологического расширения) важнейшее событие в истории космологии. Обычное вещество, из которого состоит планета Земля (и все, что на ней, включая и нас самих), Солнце, другие звезды, складывается всего из трех видов элементарных частиц: протонов, нейтронов и электронов. А темная материя, которой во Вселенной гораздо больше, имеет совсем другой состав: это не барионы (протоны и нейтроны), не электроны, а… неизвестно что.

Четверть века назад Я. Б. Зельдович активно развивал представление о том, что темная материя могла бы состоять из нейтрино. Космологические нейтрино (и антинейтрино) определенно имеются во Вселенной. Они вышли из равновесия с веществом, когда возраст мира был меньше одной секунды, и с тех пор присутствуют в космосе, взаимодействуя с остальными видами энергии практически только гравитационно. Их должно быть в среднем около 300 в каждом кубическом сантиметре пространства. В начале 1980-х гг. казалось, что лабораторный физический эксперимент позволяет этим частицам иметь массы, подходящие для того, чтобы нейтрино могли играть роль темной материи. Сейчас, однако, стало ясно, что массы нейтрино значительно меньше, так что на них можно списать в лучшем случае примерно 10 % темной материи. Каковы же тогда основные носители этой субстанции?

Одна из современных гипотез, выросшая из идеи Зельдовича, заключается в том, что темная материя состоит в основном из частиц, в некотором смысле очень похожих на нейтрино: они стабильны, не имеют электрического заряда и участвуют только в гравитационном и слабом взаимодействиях. Однако такие частицы сильно отличаются от нейтрино по массе: они должны быть очень тяжелыми, примерно в 1000 раз тяжелее протона, так что энергия покоя такой частицы составляет около 1 ТэВ. Такие частицы до сих пор не были известны ни в теории, ни в физическом эксперименте. Если они действительно существуют, то, как показывает теория, они вполне могли бы присутствовать во Вселенной в нужном количестве. Таким путем космология приходит к интересному предсказанию: в природе должны существовать массивные стабильные слабовзаимодействующие элементарные частицы, на долю которых приходится примерно 25 % всей массы и энергии Вселенной, что в 4-5 раз больше, чем вклад барионов.

Согласно одной из Гипотез, Темная Материя состоит из частиц, похожих на Нейтрино. однако такие частицы должны быть примерно в 1000 раз тяжелее Протона

Возможно, нужные по свойствам новые частицы будут обнаружены на Большом адронном коллайдере в ЦЕРНе, который готовится к проведению небывалых экспериментов. На этом мощнейшем ускорителе пучки протонов и ионов будут разгоняться до энергий более 10 ТэВ, что заметно превышает энергию покоя гипотетических темных частиц. В нескольких крупных лабораториях мира, в том числе и в России, строятся специальные установки для детектирования частиц темной материи, приходящих на Землю из гало нашей Галактики. Не исключено, что вопрос о физической природе темной материи будет решен уже в недалеком будущем. Во всяком случае эта загадка не кажется такой безнадежной, как природа космологического расширения.

Фон фотонов

В 1965 г. американские радиоастрономы Арно Пензиас и Роберт Вилсон обнаружили, что вся Вселенная пронизана электромагнитным излучением, приходящим на Землю изотропно, т. е. равномерно со всех направлений. Это третье из крупнейших открытий в космологии.

Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение по длинам волн (или частотам), совпадает по форме со спектром абсолютно черного тела. На языке квантов можно сказать, что в мире имеется газ фотонов, которые равномерно заполняют все пространство. Температура этого газа точно измерена: T = 2,725 K. Как видим, это очень низкая температура, она не выше трех градусов, считая от абсолютного нуля (по шкале Цельсия это −270°). Таких космических фотонов очень много во Вселенной: их почти в 10 млрд раз больше, чем протонов, если считать по числу частиц. В кубическом сантиметре пространства содержится примерно 500 реликтовых фотонов.

Само по себе изотропное космическое излучение не таит никаких особенных загадок. Это реликт, т. е. остаток, того состояния, в котором Вселенная находилась в очень далеком прошлом, в первые минуты своего расширения. В те времена в ней не было ни звезд, ни галактик, а все вещество распределялось в пространстве более или менее равномерно. Это можно себе представить, если мысленно обратить ход времени: глядя назад, мы увидим, что галактики не разбегаются, а сближаются между собой. И в определенный момент они должны перемешаться, так что их вещество окажется газом приблизительно однородной плотности. Этот газ должен быть очень горячим. Еще со школьной скамьи мы знаем, что при расширении тела охлаждаются, а при сжатии – нагреваются. Из физики известно также, что в горячем газе должны обязательно иметься фотоны, находящиеся с газом в термодинамическом равновесии. При расширении Вселенной фотоны не исчезают и должны сохраниться до современной эпохи.

Так рассуждал еще в 1940-х гг. Георгий Гамов, некогда студент профессора Фридмана в Ленинграде. Он построил теорию «горячей Вселенной», которую называют еще теорией Большого Взрыва, и на ее основе смог предсказать само существование этого остаточного, реликтового излучения. Более того, он предсказал и нынешнюю температуру реликтовых фотонов. По его расчетам, она не должна превышать 10 K. В одной из научно-популярных статей (в 1950 г.) Гамов написал, что температура должна быть примерно три градуса абсолютной шкалы. Как выяснилось через полтора десятка лет, предсказание оказалось очень точным. Многие считают, что это было самое красивое количественное предсказание во всей космологической теории.

Но кое-что не до конца ясно и с реликтовым излучением. Космологам не удается понять, почему реликтовых фотонов так много (по сравнению с протонами). Впрочем, правильнее было бы сказать, что это вопрос не о фотонах, а, скорее, о протонах: почему их именно столько, сколько известно из наблюдений? Ответа пока нет. С этой проблемой не удалось справиться даже А. Д. Сахарову, который считал ее одной из самых принципиальных как в космологии, так и во всей фундаментальной физике.

Открытие и изучение реликтового излучения отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, вторая – в 2006 г. Джорджу Смуту и Джону Матеру, которые в 1992 г. доказали, что реликтовое излучение – это действительно термодинамически равновесный газ фотонов определенной температуры. Это было сделано с помощью американского спутника COBE (Cоsmic Background Explorer). Кроме того, COBE измерил слабую - на уровне тысячных долей процента – анизотропию фонового излучения. Последняя представляет собой «отпечаток» первоначально слабых неоднородностей вещества ранней Вселенной, которые позднее дали начало наблюдаемым крупномасштабным космическим структурам – галактикам и скоплениям галактик.

Георгий Гамов (1904-1968)за 15 лет до Открытия Пензиаса и Вилсона предвидел, что Температура Реликтового Излучения должна быть около Трех Градусов. Это было самое точное количественное предсказание в Космологии

В наши дни наблюдения реликтового излучения служат астрономам для изучения крупномасштабных свойств Вселенной. Самый яркий результат, достигнутый на этом пути в последние годы, касается геометрии трехмерного пространства, в котором происходит разбегание галактик. Начиная с Фридмана, космологи стремились выяснить тип геометрии реального пространства. Оказалось, что это обычная школьная эвклидова геометрия. Выходит, наш мир устроен не слишком сложно: по крайней мере его пространственная геометрия – самая простая из возможных.

Всемирное антитяготение

В 1998-1999 гг. две международные группы наблюдателей, одной из которых руководили Брайан Шмидт и Адам Райсс, а другой – Сол Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем. Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью. Из-за исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек.

Вещество (считая и с темной материей) не способно ускорять галактики, а лишь тормозит их разлет: взаимное притяжение галактик стремится сблизить их друг с другом. Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует особая космическая масса, или энергия, которая создает не тяготение, а антитяготение – всеобщее отталкивание тел. При этом в космологическом масштабе антитяготение сильнее тяготения. Новая энергия получила название темной энергии. Она дей­ствительно невидима: не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только антитяготением.

Астрономы выяснили, что до расстояний примерно в 7 млрд световых лет космологическое ускорение положительно. Но на еще более далеких расстояниях ускорение, как оказалось, меняет знак: там оно отрицательно, а значит, на этих сверхбольших расстояниях космологическое расширение происходит с замедлением.

Примем теперь во внимание, что свет распространяется в пространстве с конечной скоростью. Это означает, что мы видим объекты такими, какими они были, когда испустили принимаемый нами сейчас свет. Солнце мы видим с задержкой в 8 мин, далекие галактики наблюдаем такими, какими они были миллиарды лет назад. Телескоп – это настоящая машина времени, позволяющая воочию видеть прошлое мира. Возраст мира составляет 13,7 млрд лет – таковы самые свежие космологические данные.

Сказанное только что о космологическом ускорении означает, что первую половину своей и­стории Вселенная расширялась с замедлением, а вторую – с ускорением. Первые 7 млрд лет расширяющаяся Вселенная практически не чувствовала присутствия в ней темной энергии: плотность вещества (темной материи и барионов) была значительно выше плотности темной энергии. Предполагается, что плотность темной энергии не зависит от времени, это величина постоянная. А плотность вещества убывает в ходе расширения, так что в прошлом она была выше, чем сейчас; по этой причине до определенного момента тяготение вещества было сильнее антитяготения темной энергии. Эти две силы как раз и сравнялись по величине примерно 7 млрд лет тому назад. С тех пор темная энергия доминирует, и эта эпоха антитяготения будет длиться неограниченно долго.

По совокупности различных наблюдений (включая и наблюдения реликтового излучения) к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе Вселенной. Эти компоненты сейчас называют видами космической энергии. На долю темной энергии приходится примерно 70 % всей энергии мира; на темную материю – 25 %; на обычное вещество (протоны, нейтроны, электроны) – около 5 %; на реликтовое излучение – менее 0,1 %. Таков рецепт «энергетической смеси», заполняющей современную Вселенную. В ней, как мы видим, много «темного» – до 95 %. Это стало самой большой неожиданностью для астрономов, космологов и физиков.

Удивительно и достойно восхищения научное предвидение Эйнштейна: еще в 1917 г. он говорил о всеобщем космическом отталкивании как о возможном физическом феномене космологического масштаба. У Эйнштейна антитяготение описывается всего одной константой, которую называют космологической постоянной. Весь комплекс имеющихся сейчас наблюдательных данных о темной энергии прекрасно согласуется с таким описанием.

Антитяготение создается не Галактиками или другими Компактными Объектами, а Непрерывной Космической Средой, в которую все Тела погружены, – Темной Энергией

Эйнштейн не оставил нам физической интерпретации космологической постоянной. Согласно предложению Э. Б. Глинера, высказанному еще в 1965 г., космологическую постоянную можно рассматривать как физическую характеристику особого рода сплошной среды, идеально равномерно заполняющей все пространство Вселенной. Плотность этой среды не только однородна, но и не зависит от времени, она одна и та же во всех системах отсчета. Из этого представления вытекают особые макроскопические свойства темной энергии. Так, оказывается, что у нее имеется давление, причем оно отрицательно, а по абсолютной величине равно плотности энергии (напомним, что плотность энергии и давление имеют одну и ту же размерность). Именно из-за своего отрицательного давления темная энергия создает антитяготение – это специфический эффект общей теории относительности.

Но каковы не макроскопические, а микроскопические свойства темной энергии? Из чего она состоит? В конце 1960-х гг., задолго до открытия темной энергии, Зельдович обсуждал возможную связь между космологической постоянной и квантовым вакуумом элементарных частиц и физических полей. Этот физический вакуум не есть абсолютная пустота, он имеет свою отличную от нуля энергию. Ее носителями служат так называемые нулевые колебания квантовых полей, всегда существующие в пространстве даже в отсутствие в нем каких-либо частиц. Если этот квантовый вакуум рассматривать макроскопически как некую среду, то ему следует приписать не только плотность энергии, но также и давление. При этом связь между давлением и плотностью должна быть в точности такой, как и у темной энергии, описываемой эйнштейновской космологической постоянной. Так не тождественна ли темная энергия физическому вакууму?

Было бы замечательно, если бы удалось доказать, что это действительно так: объединение кажущихся разными сущностей – плодотворнейший путь развития науки. Это известно еще со времен Максвелла, объединившего электричество и магнетизм. Но до сих пор идею Зельдовича не удается ни доказать, ни опровергнуть. Физическая природа и микроскопическая структура темной энергии стала сейчас центральной проблемой космологии и всей фундаментальной физики. Похоже, она столь же сложна, как и вопрос о происхождении космологического расширения.

Итак, за 90 лет своего существования, считая от первых наблюдений Слайфера и теоретической работы Эйнштейна, космология превратилась из области абстрактных и почти фантастических, как казалось, занятий на далекой периферии тогдашней науки в одно из центральных направлений естествознания XXI в. Она обладает надежным наблюдательным фундаментом, который складывается из базовых фактов о Вселенной. На нем строится и развивается теория, прочно связанная со всей современной физикой, включая общую теорию относительности, ядерную физику и физику элементарных частиц. Космология ставит новые важные вопросы, выдвигает содержательные идеи и гипотезы, делает смелые предсказания. Она дает широкую, богатую и согласованную картину мира, которая становится сейчас неотъемлемой частью общей культуры человечества. А нерешенные проблемы в живой, сложной науке всегда есть и должны быть – это источник и резерв ее дальнейшего развития.

Литература

Вейнберг С. Первые три минуты. М.: Атомиздат, 1982.

Новиков И. Д., Шаров А. С. Человек, открывший взрыв Вселенной. М.: Наука, 1989.

Розенталь И. Л. Элементарные частицы и структура Вселенной. М.: Недра, 1984.

Тропп Э. А., Френкель В. Я., Чернин А. Д. Александр Александрович Фридман. Труды и жизнь. М.: Наука, 1988.

Черепащук А. М., Чернин А. Д. Вселенная, жизнь, черные дыры. Фрязино: Век-2, 2003.

Черепащук А. М., Чернин А. Д. Горизонты Вселенной. Новосибирск: Изд-во СО РАН, 2005.

Далекое будущее Вселенной [Эсхатология в космической перспективе] Эллис Джордж

4.2. С точки зрения научной космологии

С XVII века, когда наука приняла свою современную форму, она разделяла иудео–христианский взгляд на мир. Поток (англ. flux) линейного времени стал основой, на которой Ньютон построил свою механику (его теория «флюксий» ныне известна как дифференциальное исчисление). Любопытно, что космология Ньютона статична и вечна, однако поддерживается божественными заботами.

Наука держалась за статичную и вечную картину космоса вплоть до двадцатого века, когда выяснилось, что вселенная расширяется. С тех пор было выдвинуто множество космологических моделей, исходящих из этого факта. Их выводы о конечной судьбе вселенной радикально различны. Приведем их краткий обзор:

1. Вселенная возникает в определенный момент в прошлом и расширяется вечно, дегенерируя согласно второму закону термодинамики и в очень отдаленном будущем приближаясь к состоянию почти безликого равновесия («тепловой смерти» в космологии XIX века).

2. Вселенная возникает в определенный момент в прошлом и исчезает в определенный момент в будущем (например, коллапсирует в сингулярность конечного «большого схлопывания» или гибнет в космической катастрофе, вроде распада квантового вакуума). Энтропия постоянно возрастает, однако вселенная (по крайней мере в ее нынешней форме) исчезнет раньше, чем будет достигнуто состояние конечного равновесия.

3. Развивается сценарий 2, однако в определенный момент, возможно, в точке, близкой к максимальному расширению, «стрела времени» поворачивает вспять - и вселенная возвращается к итоговому, относительно упорядоченному состоянию, которое аналогично или даже идентично изначальному состоянию «Большого взрыва».

4. Циклическая вселенная, в которой за расширением и сжатием следует «большой скачок» в новый цикл расширения и сжатия. Вселенная бесконечно пульсирует таким образом. Здесь возможны следующие варианты:

Информация о физическом состоянии до скачка переживает скачок, так что вселенная продолжает развиваться согласно законам термодинамики. С каждым скачком циклы увеличиваются (на что указывал Толмен еще в 1930–х годах) и, возможно, после множества циклов возникает нечто подобное нашей вселенной .

Скачок представляет собой столь экстремальный физический переход, что информация после него воспроизводится «с нуля» , может быть, случайным образом. Возможно, изменяются сами законы физики. В этом случае эволюция каждого цикла не обязана коррелировать с предыдущими и последующими циклами. Стоит спросить, уместны ли здесь вообще термины «предыдущий» и «последующий», поскольку временная последовательность в этом случае теряет смысл. С тем же успехом можно сказать, что циклы не последовательны, а параллельны.

Циклическая модель каким?либо образом комбинируется с обращением времени. Например, стрела времени может быть направлена в разные стороны в следующих друг за другом циклах, поворачиваясь вспять (скорее всего) не на вершине расширения, а в момент скачка. В таком случае по прошествии двух циклов вселенная вернется в изначальное состояние.

5. Стационарная вселенная, которая не имеет ни начала, ни конца, но продолжает неограниченно расширяться. Постоянно возникающая новая материя заполняет промежутки, возникающие при разбегании галактик. Эти инъекции низкоэнтропийной материи всегда «подпитывают» вселенную, позволяя ей сочетать вечное существование с бесконечным развитием. Из вариаций на эту тему можно назвать космологию С–поля, разработанную Хойлом , с асимптотически стационарной вселенной, или модели, в которых эволюционные эпизоды погружены в общее стационарное состояние.

6. Космологии мультивселенных. Общая идея этих моделей: то, что мы до сих пор принимали за «вселенную», на самом деле лишь «пузырь пространства», в гораздо более крупной системе, где другие «пузыри», возможно, с совершенно разными физическими условиями, существуют на очень большом расстоянии друг от друга. Каждый «пузырь» может проходить свой жизненный цикл: рождение, развитие и, возможно, смерть; но это не мешает всему ансамблю в целом пребывать в состоянии, похожем на стационарное. Таким образом, мультивселенная вечна, но ее индивидуальные компоненты - нет. Среди моделей такого рода можно назвать хаотическую космологию Линде и «космический дарвинизм» Смолина . В последней модели одна вселенная может порождать другие посредством своеобразного «почкования», так что ситуация напоминает жизнь биологических организмов - по мере того как вселенная - «родитель» стареет, рождаются новые вселенные, и так до бесконечности.

Хотя астрономические наблюдения предлагают нам возможность различения между этими моделями, космология (по крайней мере до самого последнего времени) славилась тем, что из одних и тех же наблюдений разные космологи делали совершенно разные выводы. В этой атмосфере, вероятно, можно понять сторонников и противников различных моделей, которые чаще, чем это принято в науке, привлекают себе на помощь аргументы эмоционального и богословского характера. Например, Фред Хойл ясно дал понять, что теория стационарного состояния привлекательна для него потому, что исключает «Большой взрыв» , который в 1950–х годах идентифицировался в некоторых кругах (например, папой Пием XII) с иудео–христианской концепцией творения. Для Хойла (в то время) идея божественного творения была нетерпима, поэтому он приветствовал теорию вселенной, не имеющей ни начала ни конца, как способ избавить научную космологию от ее богословских корней. В том же духе многие ученые (например, Роберт Джастроу ) принимали прямо противоположную точку зрения, заявляя, что верят в «большой взрыв» как научную версию библейского мифа о творении. Нет сомнения, что даже сейчас теисты чувствуют себя более комфортабельно с теорией «Большого взрыва», хотя самому по себе учению о творении ex nihilo никогда не предназначался большой вклад в описание начала вселенной.

Из книги НИЧЕГО ОБЫЧНОГО автора Миллмэн Дэн

Смещение точки зрения Еще одним средством из арсенала Мирного Воина является способность сдвигать точку зрения. Однажды Сократ очень живописно описал мне этот прием, когда мы прогуливались по лесистым холмам неподалеку от Беркли. Я спросил его о «значении счастья». Он

Из книги Судьба цивилизации. Путь Разума автора Моисеев Никита Николаевич

5.3. Две крайние точки зрения Для того, чтобы вложить в термин “устойчивое развитие” смысл, отвечающий современным потребностям человечества, надо представить себе перспективу взаимоотношений Природы и общества, очищенную от любых иллюзий как сверхоптимизма,

Из книги Сознание говорит автора Балсекар Рамеш Садашива

Глава 6. С точки зрения просветленного Общее обсуждение Как просветленный организм тела-ума рассматривает этот мир? Что он видит? Что он имеет в виду, описывая мир как нереальный?Шанкара описывал феноменальный мир как нереальный, поэтому его окрестили атеистом. Контекст,

Из книги Философ на краю Вселенной. НФ–философия, или Голливуд идет на помощь: философские проблемы в научно–фантастических фильмах автора Роулендс Марк

С точки зрения вечности Утром, когда вы спешите на работу, в школу или по другим делам, проходя по оживленным улицам, обратите внимание на окружающую вас суматошную и суетливую толпу. Что делают эти люди? Куда они спешат? Приглядитесь к одному человеку из толпы. Скорее

Из книги Основы метасатанизма. Часть I. Сорок правил метасатаниста автора Морген Фриц Моисеевич

Из книги Мистерии древности и христианство автора Штайнер Рудольф

ТОЧКИ ЗРЕНИЯ Естественно-научное мышление оказало глубокое влияние на современные представления. Все менее становится возможным говорить о духовных потребностях, о «жизни души», не впадая в противоречие с представлениями и выводами естествознания. Конечно, существует

Из книги MMIX - Год Быка автора Романов Роман

3. С точки зрения Автора Надеюсь, что всем известен точный смысл слова «притча». Притча – это повествование о простых вещах, за которыми скрыт более глубокий взгляд на сложный мир идеальных, духовных сущностей. Я уже пытался показать на конкретных примерах сказок

Из книги Том 2 автора Энгельс Фридрих

4) РАЗОБЛАЧЁННАЯ ТАЙНА «ТОЧКИ ЗРЕНИЯ» «Рудольф не останавливается на своей возвышенной» (!) «точке зрения… Он не жалеет труда, чтобы по свободному выбору усваивать себе точки зрения справа и слева, наверху и внизу» (Шелига).Одну из главных тайн критической критики

Из книги Духовность. Формы, принципы, подходы. Том I автора Ваайман Кейс

2.2 Междисциплинарные точки зрения В 1923 г., когда был основан Католический университет в Неймегене, кафедра «духовности» (призванная изучать философию и мистицизм) была учреждена на Философском факультете. После Второй мировой войны кафедра переместилась на

Из книги Этика Преображенного Эроса автора Вышеславцев Борис Петрович

12. ТРИ ТОЧКИ ЗРЕНИЯ В ФИЛОСОФИИ Здесь великий водораздел философских систем, признающих или отрицающих последний транс, систем имманентных или трансцендентных (в конце концов - человекобожеских или богочеловеческих). Между ними среднее место занимают системы

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

17.4. Новые исследования в научной космологии и эсхатологии: методика и принципы Хоть ты уверовал, что это так, Как я сказал, - твой ум не постигает; И ты, поверив, не рассеял мрак. Данте Алигъери Если это невозможно, то это не может быть правдой. Но если это правда -

Из книги Человек среди учений автора Кротов Виктор Гаврилович

С точки зрения учений А в чём вообще проблема? Ведь почти любое философское учение готово с аппетитом растолковать, что такое философия и зачем она человеку.Так-то оно так, да не просто так…Тут приходится быть осторожным. На самом деле всякое учение будет отвечать совсем

Из книги Гипноз разумности [Мышление и цивилизация] автора Цаплин Владимир Сергеевич

Из книги Открой самого себя [Сборник статей] автора Коллектив авторов

Три точки зрения Возраст – понятие очень конкретное, но в то же время и относительное. Смысл, который вкладывает в него человек, зависит от того, что он считает главным в жизни.Если для вас возраст – это «количество лет от рождения», подтверждающее, что ваше физическое

Из книги Критика политической философии: Избранные эссе автора Капустин Борис Гурьевич

Мораль с точки зрения участника политики и с точки зрения ее зрителя Собственно, некоторые из этих вопросов, точнее, некоторые возможные ответы на них не представляют большой теоретической трудности. Достаточно перейти с позиции безопасной созерцательности на позицию

Из книги Философия возраста [Циклы в жизни человека] автора Сикирич Елена

Три точки зрения Возраст – понятие очень конкретное, но в то же время и относительное. Смысл, который вкладывает в него человек, зависит от того, что он считает главным в жизни.Если для вас возраст – это «количество лет от рождения», подтверждающее, что ваше

Понравилась статья? Поделитесь ей