Контакты

Расстояние от точки до плоскости: определение и примеры нахождения. Определение расстояния между точкой и плоскостью, прямой и плоскостью, между плоскостями и скрещивающимися прямыми Расстояние от точки до плоскости формула векторы

Поиск расстояния от точки до плоскости - частая задача, возникающая при решении различных задач аналитической геометрии, например, к этой задаче можно свести нахождение расстояния между двумя скрещивающимися прямыми или между прямой и параллельной ей плоскостью.

Рассмотрим плоскость $β$ и точку $M_0$ с координатами $(x_0;y_0; z_0)$, не принадлежащую плоскости $β$.

Определение 1

Кратчайшим расстоянием между точкой и плоскостью будет перпендикуляр, опущенный из точки $М_0$ на плоскость $β$.

Рисунок 1. Расстояние от точки, до плоскости. Автор24 - интернет-биржа студенческих работ

Ниже рассмотрено как найти расстояние от точки до плоскости координатным методом.

Вывод формулы для координатного метода поиска расстояния от точки до плоскости в пространстве

Перпендикуляр из точки $M_0$, пересекающийся с плоскостью $β$ в точке $M_1$ с координатами $(x_1;y_1; z_1)$, лежит на прямой, направляющим вектором которой является нормальный вектор плоскости $β$. При этом длина единичного вектора $n$ равна единице. Соответственно этому, расстояние от $β$ до точки $M_0$ составит:

$ρ= |\vec{n} \cdot \vec{M_1M_0}|\left(1\right)$, где $\vec{M_1M_0}$ - нормальный вектор плоскости $β$, а $\vec{n}$ - единичный нормальный вектор рассматриваемой плоскости.

В случае, когда уравнение плоскости задано в общем виде $Ax+ By + Cz + D=0$, координаты нормального вектора плоскости представляют собой коэффициенты уравнения $\{A;B;C\}$, а единичный нормальный вектор в этом случае имеет координаты, вычисляемые по следующему уравнению:

$\vec{n}= \frac{\{A;B;C\}}{\sqrt{A^2 + B^2 + C^2}}\left(2\right)$.

Теперь можно найти координаты нормального вектора $\vec{M_1M_0}$:

$\vec{M_0M_1}= \{x_0 – x_1;y_0-y_1;z_0-z_1\}\left(3\right)$.

Также выразим коэффициент $D$, используя координаты точки, лежащей в плоскости $β$:

$D= Ax_1+By_1+Cz_1$

Координаты единичного нормального вектора из равенства $(2)$ можно подставить в уравнение плоскости $β$, тогда мы имеем:

$ρ= \frac{|A(x_0 -x_1) + B(y_0-y_1)+C(z_0-z_1)|}{\sqrt{A^2+B^2+C^2}}= \frac{|Ax_0+ By_0 + Cz_0-(Ax_1+By_1+Cz_1)|}{\sqrt{A^2+B^2+C^2}} = \frac{Ax_0+ By_0 + Cz_0 + D}{\sqrt{A^2+B^2+C^2}}\left(4\right)$

Равенство $(4)$ является формулой для нахождения расстояния от точки до плоскости в пространстве.

Общий алгоритм для нахождения расстояния от точки $M_0$ до плоскости

  1. Если уравнение плоскости задано не в общей форме, для начала необходимо привести его к общей.
  2. После этого необходимо выразить из общего уравнения плоскости нормальный вектор данной плоскости через точку $M_0$ и точку, принадлежащую заданной плоскости, для этого нужно воспользоваться равенством $(3)$.
  3. Следующий этап - поиск координат единичного нормального вектора плоскости по формуле $(2)$.
  4. Наконец, можно приступить к поиску расстояния от точки до плоскости, это осуществляется с помощью вычисления скалярного произведения векторов $\vec{n}$ и $\vec{M_1M_0}$.

С помощю этого онлайн калькулятора можно найти расстояние от точки до заданной плоскости. Дается подробное решение с пояснениями. Для вычисления расстояния от точки до плоскости введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние от точки до плоскости − теория, примеры и решения

Для нахождения расстояния от точки M 0 до плоскости α , необходимо найти расстояние от точки M 0 до проекции точки M 0 на плоскость α :

Нахождение расстояния от точки до плоскости содержит следующие шаги:

  1. построение прямой L , проходящей через точку M 0 и перпендикулярной плоскости α .
  2. нахождение точки M 1 пересечения плоскости α с прямой L (Рис.1).
  3. вычисление расстояния между точками M 0 и M 1 .

где n (A,B,C )− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M 0 (x 0 , y 0 , z 0) и имеющий направляющий вектор q (l, m, n ) имеет следующий вид:

Для нахождения точку пересечения прямой L с плоскостью α , проще всего рассматривать параметрическое уравнение прямой. Составим ее

A 2 t +Ax 0 +B 2 t +By 0 +C 2 t +Cz 0 +D =0,

Учитывая значение параметра t , имеем:

Нормальный вектор плоскости имеет вид:

n =(5, 1, 2),

т.е. A =5, B =1, C =2.

Координаты точки M 0: x 0 =2, y 0 =−1, z 0 =−9/31.

Подставляя координаты точки M 0 и нормального вектора плоскости в (5), получим.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

ЗАДАЧИ C2 ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА ПО МАТЕМАТИКЕ НА НАХОЖДЕНИЕ РАССТОЯНИЯ ОТ ТОЧКИ ДО ПЛОСКОСТИ

Куликова Анастасия Юрьевна

студент 5 курса, кафедра мат. анализа, алгебры и геометрии ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

Ганеева Айгуль Рифовна

научный руководитель, канд. пед. наук, доцент ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

В заданиях ЕГЭ по математике в последние годы появляются задачи на вычисление расстояния от точки до плоскости. В данной статье на примере одной задачи рассмотрены различные методы нахождения расстояния от точки до плоскости. Для решения различных задач можно использовать наиболее подходящий метод. Решив задачу одним методом, другим методом можно проверить правильность полученного результата.

Определение. Расстояние от точки до плоскости, не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на данную плоскость.

Задача. Дан прямоугольный параллелепипед А B С DA 1 B 1 C 1 D 1 со сторонами AB =2, BC =4, AA 1 =6. Найдите расстояние от точки D до плоскости АС D 1 .

1 способ . Используя определение . Найти расстояние r(D , АС D 1) от точки D до плоскости АС D 1 (рис. 1).

Рисунок 1. Первый способ

Проведем DH АС , следовательно по тереме о трех перпендикулярах D 1 H АС и (DD 1 H )⊥АС . Проведем прямую DT перпендикулярно D 1 H . Прямая DT лежит в плоскости DD 1 H , следовательно DT AC . Следовательно, DT АС D 1.

А DC найдем гипотенузу АС и высоту DH

Из прямоугольного треугольника D 1 DH найдем гипотенузу D 1 H и высоту DT

Ответ: .

2 способ. Метод объемов (использование вспомогательной пирамиды ). Задачу данного типа можно свести к задаче о вычислении высоты пирамиды, где высота пирамиды является искомым расстоянием от точки до плоскости. Доказать, что эта высота и есть искомое расстояние; найти объём этой пирамиды двумя способами и выразить эту высоту.

Отметим, что при данном методе нет необходимости в построении перпендикуляра из данной точки к данной плоскости.

Прямоугольный параллелепипед - параллелепипед, все грани которого являются прямоугольниками.

AB =CD =2, BC =AD =4, AA 1 =6.

Искомым расстоянием будет высота h пирамиды ACD 1 D , опущенной из вершины D на основание ACD 1 (рис. 2).

Вычислим объем пирамиды ACD 1 D двумя способами.

Вычисляя, первым способом за основание примем ∆ ACD 1 , тогда

Вычисляя, вторым способом за основание примем ∆ ACD , тогда

Приравняем правые части последних двух равенств, получим

Рисунок 2. Второй способ

Из прямоугольных треугольников АС D , ADD 1 , CDD 1 найдем гипотенузы, используя теорему Пифагора

ACD

Вычислим площадь треугольника АС D 1 , используя формулу Герона

Ответ: .

3 способ. Координатный метод.

Пусть дана точка M (x 0 ,y 0 ,z 0) и плоскость α , заданная уравнением ax +by +cz +d =0 в прямоугольной декартовой системе координат. Расстояние от точки M до плоскости α можно вычислить по формуле:

Введем систему координат (рис. 3). Начало координат в точке В ;

Прямая АВ - ось х , прямая ВС - ось y , прямая BB 1 - ось z .

Рисунок 3. Третий способ

B (0,0,0), А (2,0,0), С (0,4,0), D (2,4,0), D 1 (2,4,6).

Пусть a х+ by + cz + d =0 – уравнение плоскости ACD 1 . Подставляя в него координаты точек A , C , D 1 получим:

Уравнение плоскости ACD 1 примет вид

Ответ: .

4 способ. Векторный метод.

Введем базис (рис. 4) , .

Рисунок 4. Четвертый способ

Условия параллельности и перпендикулярности

1°. Условие компланарности двух плоскостей

Пусть даны две плоскости:

A 1 x + B 1 y + C 1 z + D 1 = 0, n 1 = {A 1 ; B 1 ; C 1 } ≠ 0 ;(1)

A 2 x + B 2 y + C 2 z + D 2 = 0, n 2 = {A 2 ; B 2 ; C 2 } ≠ 0 .(2)

Когда они компланарны (т. е. параллельны или совпадают)? Очевидно, это будет тогда и только тогда, когда их нормальные векторы коллинеарны. Применяя критерий компла­нарности, получаем

Предложение 1. Две плоскости компланарны тогда и только тогда, когда вектор­ное произведение их нормальных векторов равно нулевому вектору:

[n 1 , n 2 ] = 0 .

2°. Условие совпадения двух плоскостей

Предложение 2. Плоскости (1) и (2) совпадают тогда и только тогда, когда все че­тыре их коэффициента пропорциональны, т. е. существует такое число λ, что

A 2 = λA 1 , B 2 = λB 1 , C 2 = λC 1 , D 2 = λD 1 . (3)

Доказательство. Пусть условия (3) выполнены. Тогда уравнение второй плоскости может быть записано так:

λA 1 x + λB 1 y + λC 1 z + λD 1 = 0.

λ ≠ 0, иначе было бы A 2 = B 2 = C 2 = D 2 = 0, что противоречит условию n 2 ≠ 0 . Следова­тельно, последнее уравнение эквивалентно уравнению (1), а это означает, что две плоско­сти совпадают.

Пусть теперь, наоборот, известно, что данные плоскости совпадают. Тогда их нор­мальные векторы коллинеарны, т. е. существует такое число λ такое, что

A 2 = λA 1 , B 2 = λB 1 , C 2 = λC 1 .

Уравнение (2) можно теперь переписать в виде:

λA 1 x + λB 1 y + λC 1 z + D 2 = 0.

Умножим уравнение (1) на λ, получим равносильное уравнение первой плоскости (т. к. λ ≠ 0):

λA 1 x + λB 1 y + λC 1 z + λD 1 = 0.

Возьмём какую-нибудь точку (x 0 , y 0 , z 0) из первой (а следовательно, и второй) плоскости и подставим её координаты в последние два уравнения; получим верные равен­ства:

λA 1 x 0 + λB 1 y 0 + λC 1 z 0 + D 2 = 0 ;

λA 1 x 0 + λB 1 y 0 + λC 1 z 0 + λD 1 = 0.

Вычитая из верхнего нижнее, получим D 2 − λD 1 = 0, т. е. D 2 = λD 1 , QED.

3°. Условие перпендикулярности двух плоскостей

Очевидно, для этого необходимо и достаточно, чтобы нормальные векторы были перпендикулярны.

Предложение 3. Две плоскости перпендикулярны тогда и только тогда, когда ска­лярное произведение нормальных векторов равно нулю:

(n 1 , n 2) = 0 .

Пусть дано уравнение плоскости

Ax + By + Cz + D = 0, n = {A ; B ; C } ≠ 0 ,

и точка M 0 = (x 0 , y 0 , z 0). Выведем формулу расстояния от точки до плоскости:

Возьмём произвольную точку Q = (x 1 , y 1 , z 1), лежащую в данной плоскости. Её ко­ординаты удовлетворяют уравнению плоскости:



Ax 1 + By 1 + Cz 1 + D = 0.

Заметим теперь, что искомое расстояние d равно абсолютной величине проекции вектора на направление вектора n (здесь мы берём проекцию как числовую величину, а не как вектор). Далее применяем формулу для вычисления проекции:

Аналогичная формула справедлива для расстояния d от точки M 0 = (x 0 , y 0) плоско­сти до прямой, заданной общим уравнением Ax + By + C = 0.

Понравилась статья? Поделитесь ей