Контакты

Понятие о марковских случайных процессах. Марковские процессы: примеры

Очень удобно описывать появление случайных событий в виде вероятностей переходов из одного состояния системы в другое, так как при этом считается, что, перейдя в одно из состояний, система не должна далее учитывать обстоятельства того, как она попала в это состояние.

Случайный процесс называется марковским процессом (или процессом без последействия ), если для каждого момента времени t вероятность любого состояния системы в будущем зависит только от ее состояния в настоящем и не зависит от того, как система пришла в это состояние.

Итак, марковский процесс удобно задавать графом переходов из состояния в состояние. Мы рассмотрим два варианта описания марковских процессов — с дискретным и непрерывным временем .

В первом случае переход из одного состояния в другое происходит в заранее известные моменты времени — такты (1, 2, 3, 4, …). Переход осуществляется на каждом такте, то есть исследователя интересует только последовательность состояний, которую проходит случайный процесс в своем развитии, и не интересует, когда конкретно происходил каждый из переходов.

Во втором случае исследователя интересует и цепочка меняющих друг друга состояний, и моменты времени, в которые происходили такие переходы.

И еще. Если вероятность перехода не зависит от времени, то марковскую цепь называют однородной .

Марковский процесс с дискретным временем

Итак, модель марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i -го состояния в j -е состояние), см. рис. 33.1 .

Рис. 33.1. Пример графа переходов

Каждый переход характеризуется вероятностью перехода P ij . Вероятность P ij показывает, как часто после попадания в i -е состояние осуществляется затем переход в j -е состояние. Конечно, такие переходы происходят случайно, но если измерить частоту переходов за достаточно большое время, то окажется, что эта частота будет совпадать с заданной вероятностью перехода.

Ясно, что у каждого состояния сумма вероятностей всех переходов (исходящих стрелок) из него в другие состояния должна быть всегда равна 1 (см. рис. 33.2 ).

Рис. 33.2. Фрагмент графа переходов
(переходы из i-го состояния являются
полной группой случайных событий)

Например, полностью граф может выглядеть так, как показано на рис. 33.3 .

Рис. 33.3. Пример марковского графа переходов

Реализация марковского процесса (процесс его моделирования) представляет собой вычисление последовательности (цепи) переходов из состояния в состояние (см. рис. 33.4 ). Цепь на рис. 33.4 является случайной последовательностью и может иметь также и другие варианты реализации.

Рис. 33.4. Пример марковской цепи, смоделированной
по марковскому графу, изображенному на рис. 33.3

Чтобы определить, в какое новое состояние перейдет процесс из текущего i -го состояния, достаточно разбить интервал на подынтервалы величиной P i 1 , P i 2 , P i 3 , … (P i 1 + P i 2 + P i 3 + … = 1 ), см. рис. 33.5 . Далее с помощью ГСЧ надо получить очередное равномерно распределенное в интервале случайное число r рр и определить, в какой из интервалов оно попадает (см. лекцию 23).

Рис. 33.5. Процесс моделирования перехода из i-го
состояния марковской цепи в j-е с использованием
генератора случайных чисел

После этого осуществляется переход в состояние, определенное ГСЧ, и повтор описанной процедуры для нового состояния. Результатом работы модели является марковская цепь (см. рис. 33.4 ) .

Пример. Имитация стрельбы из пушки по цели . Для того, чтобы проимитировать стрельбу из пушки по цели, построим модель марковского случайного процесса.

Определим следующие три состояния: S 0 — цель не повреждена; S 1 — цель повреждена; S 2 — цель разрушена. Зададим вектор начальных вероятностей:

S 0 S 1 S 2
P 0 0.8 0.2 0

Значение P 0 для каждого из состояний показывает, какова вероятность каждого из состояний объекта до начала стрельбы.

Зададим матрицу перехода состояний (см. табл. 33.1).

Таблица 33.1.
Матрица вероятностей перехода
дискретного марковского процесса
В S 0 В S 1 В S 2 Сумма вероятностей
переходов
Из S 0 0.45 0.40 0.15 0.45 + 0.40 + 0.15 = 1
Из S 1 0 0.45 0.55 0 + 0.45 + 0.55 = 1
Из S 2 0 0 1 0 + 0 + 1 = 1

Матрица задает вероятность перехода из каждого состояния в каждое. Заметим, что вероятности заданы так, что сумма вероятностей перехода из некоторого состояния в остальные всегда равна единице (куда-то система должна перейти обязательно).

Наглядно модель марковского процесса можно представить себе в виде следующего графа (см. рис. 33.6 ).

Рис. 33.6. Граф марковского процесса,
моделирующий стрельбу из пушки по цели

Используя модель и метод статистического моделирования, попытаемся решить следующую задачу: определить среднее количество снарядов, необходимое для полного разрушения цели.

Проимитируем, используя таблицу случайных чисел, процесс стрельбы. Пусть начальное состояние будет S 0 . Возьмем последовательность из таблицы случайных чисел: 0.31, 0.53, 0.23, 0.42, 0.63, 0.21, … (случайные числа можно взять, например, из этой таблицы).

0.31 : цель находится в состоянии S 0 и остается в состоянии S 0 , так как 0 < 0.31 < 0.45;
0.53 : цель находится в состоянии S 0 и переходит в состояние S 1 , так как 0.45 < 0.53 < 0.45 + 0.40;
0.23 : цель находится в состоянии S 1 и остается в состоянии S 1 , так как 0 < 0.23 < 0.45;
0.42 : цель находится в состоянии S 1 и остается в состоянии S 1 , так как 0 < 0.42 < 0.45;
0.63 : цель находится в состоянии S 1 и переходит в состояние S 2 , так как 0.45 < 0.63 < 0.45 + 0.55.

Так как достигнуто состояние S 2 (далее цель переходит из S 2 в состояние S 2 с вероятностью 1), то цель поражена. Для этого в данном эксперименте потребовалось 5 снарядов.

На рис. 33.7 приведена временная диаграмма, которая получается во время описанного процесса моделирования. Диаграмма показывает, как во времени происходит процесс изменения состояний. Такт моделирования для данного случая имеет фиксированную величину. Нам важен сам факт перехода (в какое состояние переходит система) и не важно, когда это происходит.


Рис. 33.7. Временная диаграмма переходов
в марковском графе (пример имитации)

Процедура уничтожения цели совершена за 5 тактов, то есть марковская цепь этой реализации выглядит следующим образом: S 0 —S 0 —S 1 —S 1 —S 1 —S 2 . Конечно, ответом задачи это число быть не может, так как в разных реализациях получатся разные ответы. А ответ у задачи может быть только один.

Повторяя данную имитацию, можно получить, например, еще такие реализации (это зависит от того, какие конкретно случайные числа выпадут): 4 (S 0 —S 0 —S 1 —S 1 —S 2 ); 11 (S 0 —S 0 —S 0 —S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 1 —S 1 —S 2 ); 5 (S 1 —S 1 —S 1 —S 1 —S 1 —S 2 ); 6 (S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 2 ); 4 (S 1 —S 1 —S 1 —S 1 —S 2 ); 6 (S 0 —S 0 —S 1 —S 1 —S 1 —S 1 —S 2 ); 5 (S 0 —S 0 —S 1 —S 1 —S 1 —S 2 ). Всего уничтожено 8 целей. Среднее число циклов в процедуре стрельбы составило: (5 + 4 + 11 + 5 + 6 + 4 + 6 + 5)/8 = 5.75 или, округляя, 6. Именно столько снарядов, в среднем, рекомендуется иметь в боевом запасе пушки для уничтожения цели при таких вероятностях попаданий.

Теперь следует определить точность. Именно точность может нам показать, насколько следует доверять данному ответу. Для этого проследим, как сходится последовательность случайных (приближенных) ответов к правильному (точному) результату. Напомним, что, согласно центральной предельной теореме (см. лекцию 25 , лекцию 21), сумма случайных величин есть величина неслучайная, поэтому для получения статистически достоверного ответа необходимо следить за средним числом снарядов, получаемых в ряде случайных реализаций.

На первом этапе вычислений средний ответ составил 5 снарядов, на втором этапе средний ответ составил (5 + 4)/2 = 4.5 снаряда, на третьем — (5 + 4 + 11)/3 = 6.7. Далее ряд средних величин, по мере накопления статистики, выглядит следующим образом: 6.3, 6.2, 5.8, 5.9, 5.8. Если изобразить этот ряд в виде графика средней величины выпущенных снарядов, необходимых для поражения цели, в зависимости от номера эксперимента, то обнаружится, что данный ряд сходится к некоторой величине, которая и является ответом (см. рис. 33.8 ).

Рис. 33.8. Изменение средней величины в зависимости от номера эксперимента

Визуально мы можем наблюдать, что график «успокаивается», разброс между вычисляемой текущей величиной и ее теоретическим значением со временем уменьшается, стремясь к статистически точному результату. То есть в некоторый момент график входит в некоторую «трубку», размер которой и определяет точность ответа.

Алгоритм имитации будет иметь следующий вид (см. рис. 33.9).

Еще раз заметим, что в вышерассмотренном случае нам безразлично, в какие моменты времени будет происходить переход. Переходы идут такт за тактом. Если важно указать, в какой именно момент времени произойдет переход, сколько времени система пробудет в каждом из состояний, требуется применить модель с непрерывным временем.

Марковские случайные процессы с непрерывным временем

Итак, снова модель марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i -го состояния в j -е состояние), см. рис. 33.10 .

Рис. 33.10. Пример графа марковского
процесса с непрерывным временем

Теперь каждый переход характеризуется плотностью вероятности перехода λ ij . По определению:

При этом плотность понимают как распределение вероятности во времени.

Переход из i -го состояния в j -е происходит в случайные моменты времени, которые определяются интенсивностью перехода λ ij .

К интенсивности переходов (здесь это понятие совпадает по смыслу с распределением плотности вероятности по времени t ) переходят, когда процесс непрерывный, то есть, распределен во времени.

С интенсивностью потока (а переходы — это поток событий) мы уже научились работать в лекции 28 . Зная интенсивность λ ij появления событий, порождаемых потоком, можно сымитировать случайный интервал между двумя событиями в этом потоке.

где τ ij — интервал времени между нахождением системы в i -ом и j -ом состоянии.

Далее, очевидно, система из любого i -го состояния может перейти в одно из нескольких состояний j , j + 1 , j + 2 , …, связанных с ним переходами λ ij , λ ij + 1 , λ ij + 2 , ….

В j -е состояние она перейдет через τ ij ; в (j + 1 )-е состояние она перейдет через τ ij + 1 ; в (j + 2 )-е состояние она перейдет через τ ij + 2 и т. д.

Ясно, что система может перейти из i -го состояния только в одно из этих состояний, причем в то, переход в которое наступит раньше.

Поэтому из последовательности времен: τ ij , τ ij + 1 , τ ij + 2 и т. д. надо выбрать минимальное и определить индекс j , указывающий, в какое именно состояние произойдет переход.

Пример. Моделирование работы станка . Промоделируем работу станка (см. рис. 33.10 ), который может находиться в следующих состояниях: S 0 — станок исправен, свободен (простой); S 1 — станок исправен, занят (обработка); S 2 — станок исправен, замена инструмента (переналадка) λ 02 < λ 21 ; S 3 — станок неисправен, идет ремонт λ 13 < λ 30 .

Зададим значения параметров λ , используя экспериментальные данные, получаемые в производственных условиях: λ 01 — поток на обработку (без переналадки); λ 10 — поток обслуживания; λ 13 — поток отказов оборудования; λ 30 — поток восстановлений.

Реализация будет иметь следующий вид (см. рис. 33.11 ).

Рис. 33.11. Пример моделирования непрерывного
марковского процесса с визуализацией на временной
диаграмме (желтым цветом указаны запрещенные,
синим — реализовавшиеся состояния)

В частности, из рис. 33.11 видно, что реализовавшаяся цепь выглядит так: S 0 —S 1 —S 0 —… Переходы произошли в следующие моменты времени: T 0 —T 1 —T 2 —T 3 —… , где T 0 = 0 , T 1 = τ 01 , T 2 = τ 01 + τ 10 .

Задача . Поскольку модель строят для того, чтобы на ней можно было решить задачу, ответ которой до этого был для нас совсем не очевиден (см. лекцию 01), то сформулируем такую задачу к данному примеру. Определить долю времени в течение суток, которую занимает простой станка (посчитать по рисунку) T ср = (T + T + T + T )/N .

Алгоритм имитации будет иметь следующий вид (см. рис. 33.12 ).

Рис. 33.12. Блок-схема алгоритма моделирования непрерывного
марковского процесса на примере имитации работы станка

Очень часто аппарат марковских процессов используется при моделировании компьютерных игр, действий компьютерных героев.

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позицийполной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системеS протекаетслучайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. СистемаS – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времениt 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный моментt 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянииS 0 . Мы знаем характеристики состояния системы в настоящеми все, что было приt <t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет приt >t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое времясистемаS окажется в состоянииS 1 или останется в состоянииS 0 и т.д.

Пример . СистемаS – группа самолетов, участвующих в воздушном бою. Пустьx – количество «красных» самолетов,y – количество «синих» самолетов. К моменту времениt 0 количество сохранившихся (не сбитых) самолетов соответственно –x 0 ,y 0 . Нас интересует вероятность того, что в момент временичисленный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времениt 0 , а не от того, когда и в какой последовательности погибали сбитые до моментаt 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состоянияS 1 ,S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок)S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.1.

Примечание. Переход из состояния S 0 вS 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

В этом параграфе мы используем метод марковских процессов для отыскания оптимального демодулятора. Наше изложение носит поверхностный характер, поэтому для более подробного рассмотрения интересующимся читателям следует обратиться к дополнительным источникам (в частности, ). И на этот раз будем предполагать, что сообщение является гауссовым случайным процессом с конечным представлением в переменных состояния, т. е.

где белый гауссов случайный процесс с ковариационной функцией

Хотя мы и не используем этот факт по ходу изложения, следует указать, что изложенную в данном параграфе процедуру можно также выполнить, когда уравнение состояния и уравнение наблюдения нелинейны и имеют форму

Отметим, что при некоторых ограничениях, налагаемых на является векторным марковским процессом, который необязательно является гауссовым. Ни один из ранее рассмотренных методов не позволяет решать задачи с сообщениями этого класса. Большинство результатов, которые будут получены в этом параграфе, можно также получить и для более общего процесса, описываемого уравнениями (78) и (79).

Вернемся теперь к модели в виде случайного процесса, описываемого соотношениями Ради простоты записи будем рассматривать сообщение, которое является скалярным гауссовым марковским процессом и которым передаваемое колебание модулировано каким-либо безынерционным видом модуляции. Принятое колебание записывается в виде

Процесс сообщения удовлетворяет дифференциальному уравнению первого порядка

Таким образом, при любых конечных сообщение является стационарным процессом и имеет спектр Баттерворта первого порядка. Далее, ввиду того, что марковский процесс первого порядка, его плотность вероятности при отсутствии всяких наблюдений удовлетворяет уравнению Фоккера-Планка [см. (3.79)]

Однако, поскольку наблюдалось в течение интервала времени интересующая нас плотность вероятности является не безусловной плотностью, а плотностью, обусловленной наблюдаемым колебанием Обозначим эту плотность через

Заметим, что (86) есть плотность вероятности одной случайной величины (величины, обозначающей значение а в момент времени обусловленной наблюдаемым колебанием, и представляет собой четко определенную характеристику. Можно показать , что эта плотность вероятности удовлетворяет уравнению

где математические ожидания берутся по плотности Если формально ввести производную

то (87) можно формально записать в виде дифференциального уравнения

Соотношение между апостериорной плотностью и оценкой по минимуму среднеквадратической ошибки хорошо известно. Оценка по минимуму среднеквадратической ошибки есть условное среднее апостериорной плотности (см. стр. 73 первого тома), т. е.

Умножая обе части (89) на А, интегрируя по и учитывая соответствующие условия на концах интервала, получаем (см. задачу 7.2.2)

Заметим, что (91) все еще содержит математическое ожидание по Как и следовало ожидать, это уравнение не решается для общего случая модуляции. В случае линейных методов модуляции легко показать (например, 18] или задача 7.2.1), что оно сводится к Для многих задач нелинейной модуляции добиться успеха можно путем разложения в ряд различных членов уравнения (91). Тогда, если предположить, что ошибка оценивания мала и наложить некоторые условия на моменты высших порядков, можно пренебречь членами второго и более высоких порядков и получить следующее приближенное уравнение (подробный вывод дан в гл. 4 книги ):

где через обозначена приближенная оценка по минимуму среднеквадратической ошибки. Функция есть приближенный условный [по средний квадрат ошибки, который удовлетворяет дифференциальному уравнению

с граничным условием

Заметим, что уравнение оценки (92) и дисперсионное уравнение (93) являются связанными. Заметим далее, что условная среднеквадратическая ошибка [т. е. ошибка при условии, что принято Приближения, которые необходимо допустить, чтобы получить справедливы, когда ошибка мала.

Мы видим, что уравнение (92) можно реализовать в виде структурной схемы, показанной на рис. 7.3. Эта реализация очень сходна со структурой устройства оценки по максимуму апостериорной вероятности, синтезированного в гл. 2, с той лишь разницей, что теперь фильтр в петле является автоматически реализуемым. Недостаток этой реализации - наличие связи между петлями.

В случае угловой модуляции можно показать, что этой связью обычно можно пренебречь. Например, при фазовой модуляции

Предполагается, что много больше наивысшей частоты в спектре сообщения и что система находится в статистически стационарном состоянии. В этом случае показано , что

удовлетворяет дисперсионному уравнению при подстановке

Для марковского процесса первого порядка это уравнение имеет вид

Структурная схема приемника показана на рис. 7.4. Эта структура точно совпадает с реализуемой частью приближенного приемника по максимуму апостериорной вероятности, который был синтезирован ранее (см. задачу в (68) можно теперь интерпретировать как приближенную условную среднеквадратическую ошибку.

Рис. 7.4. Оптимальный приемник: фазовая модуляция, сообщение со спектром Баттерворта первого порядка.

Ввиду того, что большая часть подробностей вывода была опущена, важно обратить внимание на ограничения полученного результата. Дифференциальное уравнение (91), определяющее условное среднее, является точным. Однако приближения, связанные с получением (92)-(93), соответствуют линеаризирующему допущению. Поэтому наш результат является приближенной оценкой по минимуму среднеквадратической ошибки, соответствующей первому члену разложения в ряд точной оценки. Чтобы получить лучшее приближение, можно удержать большее число членов разложения (см., например, ). Трудность, связанная с этой процедурой, заключается в том, что двучленное приближение является уже столь сложным, что, вероятно, не представляет практического интереса.


Лекция 9

Марковские процессы
Лекция 9
Марковские процессы



1

Марковские процессы

Марковские процессы
Случайный процесс, протекающий в системе, называется
марковским, если он обладает отсутствием последствия. Т.е.
если рассматривать текущее состояние процесса (t 0) - как
настоящее, совокупность возможных состояний { (s),s t} - как
прошлое, совокупность возможных состояний { (u),u t} - как
будущее, то для марковского процесса при фиксированном
настоящем будущее не зависит от прошлого, а определяется
лишь настоящим и не зависит от того, когда и как система
пришла в это состояние.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
2

Марковские процессы

Марковские процессы
Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова, впервые начавшего изучение вероятностной связи случайных величин
и создавшего теорию, которую можно назвать "динамикой
вероятностей". В дальнейшем основы этой теории явились
исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
3

Марков Андрей Андреевич Марков Андрей Андреевич Марков Андрей Андреевич

Марковские процессы
Марков Андрей Андреевич
1856-1922
Русский математик.
Написал около 70 работ по
теории
чисел,
теории
приближения функций, теории
вероятностей. Существенно расширил сферу применения закона
больших чисел и центральной
предельной теоремы. Является
основоположником теории случайных процессов.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
4

Марковские процессы

Марковские процессы
На практике марковские процессы в чистом виде обычно
не встречаются. Но имеются процессы, для которых влиянием «предыстории» можно пренебречь, и при изучении
таких процессов можно применять марковские модели. В
настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
5

Марковские процессы

Марковские процессы
Биология: процессы рождения и гибели - популяции, мутации,
эпидемии.
Физика:
радиоактивные
распады,
теория
счетчиков
элементарных частиц, процессы диффузии.
Химия:
теория
следов
в
ядерных
фотоэмульсиях,
вероятностные модели химической кинетики.
Images.jpg
Астрономия: теория флуктуационной
яркости млечного пути.
Теория массового обслуживания: телефонные станции,
ремонтные мастерские, билетные кассы, справочные бюро,
станочные и другие технологические системы, системы управления
гибких производственных систем, обработка информации серверами.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
6

Марковские процессы

Марковские процессы
Пусть в настоящий момент t0 система находится в
определенном состоянии S0. Мы знаем характеристики
состояния системы в настоящем и все, что было при t < t0
(предысторию процесса). Можем ли мы предсказать будущее,
т.е. что будет при t > t0?
В точности – нет, но какие-то вероятностные характеристики
процесса в будущем найти можно. Например, вероятность того,
что через некоторое время
система S окажется в состоянии
S1 или останется в состоянии S0 и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
7

Марковские процессы. Пример.

Марковские процессы
Марковские процессы. Пример.
Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество
«красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся (не сбитых) самолетов
соответственно – x0, y0.
Нас интересует вероятность того, что в момент времени
t 0 численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система
в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
8

Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Марковский процесс с конечным или счетным числом
состояний и моментов времени называется дискретной
цепью Маркова. Переходы из состояния в состояние возможны только в целочисленные моменты времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
9

10. Дискретные цепи Маркова. Пример

Марковские процессы

Предположим,
что
речь
идет
о
последовательных бросаниях монеты при
игре "в орлянку"; монета бросается в
условные моменты времени t =0, 1, ... и на
каждом шаге игрок может выиграть ±1 с
одинаковой
вероятностью
1/2,
таким
образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ... .
При условии, что ξ(t) = k, на следующем шаге выигрыш будет
уже равен ξ(t+1) = k ± 1, принимая значения j = k ± 1 c одинаковой вероятностью 1/2. Можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
10

11. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обобщая этот пример, можно представить себе систему со
счетным числом возможных состояний, которая с течением
дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.
Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов
ξ(0) -> ξ(1) -> ... -> ξ(t) -> ξ(t+1) ->...-> ... .
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
11

12. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом
состояний. Вершины графа – состояния системы. Дуги графа
– возможные переходы из состояния в состояние.
Игра «в орлянку».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
12

13. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обозначим все возможные состояния целыми i = 0, ±1, ...
Предположим, что при известном состоянии ξ(t) =i на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью
P{ (t 1) j (t) i}
независимо от ее поведения в прошлом, точнее, независимо
от цепочки переходов до момента t:
P{ (t 1) j (t) i; (t 1) it 1;...; (0) i0 }
P{ (t 1) j (t) i}
Это свойство называется марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
13

14. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Число
pij P{ (t 1) j (t) i}
называется вероятностью
перехода системы из состояния i в состояние j за один шаг в
момент времени t 1.
Если переходная вероятность не зависит от t , то цепь
Маркова называется однородной.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
14

15. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Матрица P , элементами которой являются вероятности
перехода pij , называется переходной матрицей:
p11 ... p1n
P p 21 ... p 2n
p
n1 ... p nn
Она является стохастической, т.е.
pij 1 ;
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p ij 0 .
15

16. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица переходов для игры «в орлянку»
...
k 2
k 2
0
k 1
1/ 2
k
0
k 1
k
k 1
k 2
0
1/ 2
0
0
1/ 2
0
1/ 2
0
1/ 2
0
0
0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
...
k 1 k 2
0
0
0
1/ 2
0
1/ 2
...
0
0
1/ 2
0
16

17. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Садовник в результате химического анализа почвы оценивает
ее состояние одним из трех чисел - хорошее (1), удовлетворительное (2) или плохое (3). В результате наблюдений на протяжении многих лет садовник заметил,
что продуктивность почвы в текущем
году зависит только от ее состояния в
предыдущем году. Поэтому вероятности
перехода почвы из одного состояния в
другое можно представить следующей
цепью Маркова с матрицей P1:
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
17

18. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Однако в результате агротехнических мероприятий садовник может изменить переходные вероятности в матрице P1.
Тогда матрица P1 заменится
на матрицу P2:
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
18

19. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Рассмотрим, как изменяются состояния процесса с течением времени. Будем рассматривать процесс в последовательные моменты времени, начиная с момента 0. Зададим начальное распределение вероятностей p(0) { p1 (0),..., pm (0)} , где m число состояний процесса, pi (0) - вероятность нахождения
процесса в состоянии i в начальный момент времени. Вероятность pi (n) называется безусловной вероятностью состояния
i в момент времени n 1.
Компоненты вектора p (n) показывают, какие из возможных состояний цепи в момент времени n являются наиболее
вероятными.
m
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
pk (n) 1
k 1
19

20. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Знание последовательности { p (n)} при n 1,... позволяет составить представление о поведении системы во времени.
В системе с 3-мя состояниями
p11 p12 p13
P p21
p
31
p22
p32
p23
p33
p2 (1) p1 (0) p12 p2 (0) p22 p3 (0) p32
p2 (n 1) p1 (n) p12 p2 (n) p22 p3 (n) p32
В общем случае:
p j (1) pk (0) pkj
p j (n 1) pk (n) pkj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
k
p(n 1) p(n) P
20

21. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
Шаг
{ p (n)}
n
0
1, 0, 0
n
1
0.2 , 0.5 , 0.3
n
2
0.04 , 0.35 , 0.61
n
3
0.008 , 0.195 , 0.797
n
4
0.0016 , 0.1015 , 0.8969
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
21

22. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
n
Матрица перехода за n шагов P(n) P .
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
p(2) p(0) P
2
p (2)
P(2) P 2
1, 0, 0
0.0016
0.
0.
0.0016
0.
0.
0.1015
0.0625
0.
0.1015
0.0625
0.
0.8969
0.9375
1.
0.8969
0.9375
1.
0.04 , 0.35 , 0.61
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
22

23. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Как ведут себя марковские цепи при n ?
Для однородной марковской цепи при определенных условиях выполняется следующее свойство: p (n) при n .
Вероятности 0 не зависят от начального распределения
p(0) , а определяются только матрицей P . В этом случае называется стационарным распределением, а сама цепь – эргодической. Свойство эргодичности означает, что по мере увеличения n
вероятность состояний практически перестаёт изменяться, а система переходит в стабильный режим функционирования.
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
23

24. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
0 0 1
P() 0 0 1
0 0 1
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p () (0,0,1)
24

25. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
0.1017 0.5254 0.3729
P() 0.1017 0.5254 0.3729
0.1017 0.5254 0.3729
p () (0.1017,0.5254,0.3729)
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
25

26. Марковские процессы с непрерывным временем

Марковские процессы

Процесс называется процессом с непрерывным временем, если
моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти
в любой момент.
Пример. Технологическая система S состоит из двух устройств,
каждое из которых в случайный момент времени может выйти из
строя, после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.
Возможны следующие состояния системы:
S0 - оба устройства исправны;
S1 - первое устройство ремонтируется, второе исправно;
S2 - второе устройство ремонтируется, первое исправно;
S3 - оба устройства ремонтируются.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
26

27. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Переходы системы S из состояния в состояние происходят
практически мгновенно, в случайные моменты выхода из строя
того или иного устройства или
окончания ремонта.
Вероятностью одновременного
выхода из строя обоих устройств
можно пренебречь.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
27

28. Потоки событий

Марковские процессы
Потоки событий
Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.
– это среднее число событий,
Интенсивность потока событий
приходящееся на единицу времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
28

29. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.
В частности, интенсивность
стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
29

30. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется потоком без последствий, если для
любых двух непересекающихся участков времени и число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты
времени независимо друг от друга и вызваны каждое своими собственными причинами.
Поток событий называется ординарным, если вероятность появления на элементарном участке t двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного
события, т.е. события в нем появляются поодиночке, а не группами по нескольку сразу
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
30

31. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.
Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую
роль, как и закон нормального распределения среди других
законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных
потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
31

32. Потоки событий

Марковские процессы
Потоки событий
Для простейшего потока с интенсивностью
интервал
времени T между соседними событиями имеет показательное
распределение с плотностью
p(x) e x , x 0 .
Для случайной величины T, имеющей показательное распределение, математическое ожидание есть величина, обратная параметру.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
32

33. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Рассматривая процессы с дискретными состояниями и непрерывным временем, можно считать, что все переходы системы S из состояния в состояние происходят под действием
простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.).
Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в
системе, будет марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
33

34. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть на систему, находящуюся в состоянии, действует
простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния
в состояние.
- интенсивность потока событий, переводящий систему
из состояния
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
в
.
34

35. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть рассматриваемая система S имеет
возможных состояний
. Вероятность p ij (t) является вероятностью перехода из состояния i в состояние j за время t.
Вероятность i - го состояния
- это вероятность того,
что в момент времени t система будет находиться в состоянии
. Очевидно, что для любого момента времени сумма
всех вероятностей состояний равна единице:
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
35

36. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Для нахождения всех вероятностей состояний
как
функций времени составляются и решаются дифференциальные уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний.
Для переходных вероятностей:
p ij (t) p ik (t) kj
k
Для безусловных вероятностей:
p j (t) p k (t) kj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
36

37. Колмогоров Андрей Николаевич

Марковские процессы
Колмогоров Андрей Николаевич
1903-1987
Великий русский
математик.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
37

38. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
- интенсивности потока отказов;
- интенсивности потока восстановлений.
Пусть система находится в состоянии
S0. В состояние S1 ее переводит поток
отказов первого устройства. Его интенсивность равна
где
- среднее время безотказной работы устройства.
Из состояния S1 в S0 систему переводит поток восстановлений
первого устройства. Его интенсивность равна
где
- среднее время ремонта первого станка.
Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
38

39. Системы массового обслуживания

Марковские процессы

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские,
билетные
кассы,
справочные
бюро,
станочные и другие технологические системы,
системы
управления
гибких
производственных систем,
обработка информации серверами и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
39

40. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
СМО состоит из какого – то количества обслуживающих
единиц, которые называются каналами обслуживания (это
станки, роботы, линии связи, кассиры и т.д.). Всякая СМО
предназначена для обслуживания потока заявок (требований), поступающих в случайные моменты времени.
Обслуживание заявки продолжается случайное время, после чего канал освобождается и готов к приему следующей
заявки.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
40

41. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Процесс работы СМО – случайный процесс с дискретными
состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий
(прихода новой заявки, окончания обслуживания, момента,
когда заявка, которой надоело ждать, покидает очередь).
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
41

42. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Классификация систем массового обслуживания
1. СМО с отказами;
2. СМО с очередью.
В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не
обслуживается.
В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.
СМО с очередями подразделяются на разные виды в зависимости
от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени
ожидания, «дисциплины обслуживания».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
42

43. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Предмет теории массового обслуживания – построение
математических моделей, связывающих заданные условия
работы СМО (число каналов, их производительность, правила
работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком
заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
43

44.

СПАСИБО
ЗА ВНИМАНИЕ!!!
44

45. Построить граф переходов

Марковские процессы
Построить граф переходов
0.30
0.70
0.0
0.10
0.60
0.30
0.50
0.50
0.0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»

Потоком событий называют последовательность однородных собы­тий, появляющихся одно за другим в случайные моменты времени. При­меры: поток вызовов на телефонной станции; поток сбоев ЭВМ; поток заявок на проведение расчетов в вычислительном центре и т.п.

Поток событий наглядно изображается рядом точек с абсциссами Q 1, Q 2 , ..., Q n , ... (рис. 6.15) с интервалами между ними: Т 1 = Q 2 - Q 1, T 2 = Q 3 -Q 2 , ..., Т п = Q n +1 - Q n . При его вероятностном описании поток событий может быть представлен как последовательность случайных ве­личин:

Q 1 ; Q 2 = Q 1 + T 1 ; Q 3 = Q 1 + T 1 + T 2 ; и т.д.

На рисунке в виде ряда точек изображен не сам поток событий (он случаен), а только одна его конкретная реа­лизация.

Поток событий называется стационар­ным, если его вероятностные характеристики не зависят от выбора начала отсчета или, более конкретно, если вероятность попадания того или другого числа событий на любой интервал времени зависит только от длины этого интервала и не зависит от того, где именно на оси 0-t он расположен.

Рисунок 6.15 – Реализация потока событий

Поток событий называется ординарным, если вероятность попадания на элементарный интервал времени двух или более событий пренебре­жимо мала по сравнению с вероятностью попадания одного события.

Рисунок 6.16 – Поток событий как случайный процесс

Ординарный поток событий можно интерпретировать как случайный процесс Х(t) - число событий, появившихся до момента t(рис. 6.16). Случайный процесс Х(t) скачкообразно возрастает на одну единицу в точках Q ,Q 2 ,...,Q n .

Поток событий называется потоком без последействия, если число собы­тий, попадающих на любой интервал времени , не зависит от того, сколь­ко событий попало на любой другой не пересекающийся с ним интервал. Практически отсутствие последействия в потоке означает, что события, образующие поток, появляются в те или другие моменты времени незави­симо друг от друга.

Поток событий называется простейшим, если он стационарен, ордина­рен и не имеет последействия. Интервал времени T между двумя соседними событиями простейшего потока имеет показательное распределение

(при t>0 ); (6.21)

где / М [Т] -величина, обратная среднему значению интервала Т.

Ординарный поток событий без последействия называется пуассоновским. Простейший поток является частным случаем стационарного пуассоновского потока. Интенсивностью потока событий называется среднее число событий, приходящееся на единицу времени. Для стационарного потока ; для нестационарного потока она в общем случае зависит от времени: .

Марковские случайные процессы . Случайный процесс называют марковским , если он обладает следующим свойством: для любого момента времени t 0 вероят­ность любого состояния системы в будущем (при t >t 0 ) зависит только от ее состояния в настоящем (при t =t 0 ) и не зависит от того, каким обра­зом система пришла в это состояние.

В данной главе будем рассматривать только марковские процессы c дискретными состояниями S 1, S 2 , ...,S n . Такие процессы удобно иллюст­рировать с помощью графа состояний (рис. 5.4), где прямоугольниками (или кружками) обозначены состояния S 1 , S 2 , … системы S, а стрелками - возможные переходы из состояния в состояние (на графе отме­чаются только непосредственные переходы, а не переходы через другие состояния).

Рисунок 5.4 – Граф состояний случайного процесса

Иногда на графе состояний отмечают не только возможные пере­ходы из состояния в состояние, но и возможные задержки в прежнем состоянии; это изображается стрелкой («петлей»), направленной из данного состояния в него же, но можно обходиться и без этого. Число состояний системы может быть как конечным, так и бесконечным (но счетным).

Марковский случайный процесс с дискретными состояниями и дис­кретным временем обычно называют марковской цепью. Для такого про­цесса моменты t 1 , t 2 ..., когда система S может менять свое состояние, удобно рассматривать как последовательные шаги процесса, а в качестве аргумента, от которого зависит процесс, рассматривать не время t, а номер шага: 1, 2, . . ., k;…. Случайный процесс в этом случае характеризуется последовательностью состояний

если S(0) - начальное состояние системы (перед первым шагом); S(1) - состояние системы непосредственно после первого шага; ...; S(k) - со­стояние системы непосредственно после k-го шага....

Событие S i , (i= 1,2,...) является случайным событием, поэтому последо­вательность состояний (5.6) можно рассматривать как последователь­ность случайных событий. Начальное состояние S(0) может быть как заданным заранее, так и случайным. О событиях последовательности (5.6) говорят, что они образуют марковскую цепь.

Рассмотрим процесс с n возможными состояниями S 1, S 2 , ..., S n . Если обозначить через Х(t) номер состояния, в котором находится система S в мо­мент t, то процесс описывается целочисленной случай­ной функцией Х(t)>0 , возможные значения которой равны 1, 2,...,n . Эта функция совершает скачки от одного целочисленного значения к другому в заданные моменты t 1 , t 2 , ... (рис. 5.5) и является непрерывной слева, что отмечено точками на рис. 5.5.

Рисунок 5.5 – График случайного процесса

Рассмотрим одномерный закон распределения случайной функции Х(t). Обозначим через вероятность того, что после k -го шага [и до (k+1 )-го] система S будет в состоянии S i (i=1,2,...,n) . Веро­ятности р i (k) называются вероятностями состояний цепи Маркова. Очевидно, для любого k

. (5.7)

Распределение вероятностей состояний в начале процесса

p 1 (0) ,p 2 (0),…,p i (0),…,p n (0) (5.8)

называется начальным распределением вероятностей марковской цепи. В частности, если начальное состояние S(0) системы S в точности извест­но, например S(0)=S i , то начальная вероятность P i (0) = 1, а все остальные равны нулю.

Вероятностью перехода на k -м шаге из состояния S i в состояние S j называется условная вероятность того, что система после k -го шага окажется в состоянии S j при условии, что непосредственно перед этим (после k - 1 шагов) она находилась в состоянии S i . Вероятности перехода иногда называются также «переходными вероятностями».

Марковская цепь называется однородной, если переходные вероятности не зависят от номера шага, а зависят только от того, из какого состоя­ния и в какое осуществляется переход:

Переходные вероятности однородной марковской цепи Р ij образуют квадратную таблицу (матрицу) размером n * n :

(5.10)

. (5.11)

Матрицу, обладающую таким свойством, называют стохастической. Вероятность Р ij есть не что иное, как вероятность того, что система, при­шедшая к данному шагу в состояние S j , в нем же и задержится на очеред­ном шаге.

Если для однородной цепи Маркова заданы начальное распределение вероятностей (5.8) и матрица переходных вероятностей (5.10), то вероятности состояний системы могут быть опреде­лены по рекуррентной формуле

(5.12)

Для неоднородной цепи Маркова вероятности перехода в матрице (5.10) и формуле (5.12) зависят от номера шага k .

Для однородной цепи Маркова, если все состояния являются сущест­венными, а число состояний конечно, существует предел определяемый из системы уравнений и Сумма переходных вероятностей в любой строке матрицы равна единице.

При фактических вычислениях по формуле (5.12) надо в ней учитывать не все состояния S j , а только те, для которых переходные вероятности отличны от нуля, т.е. те, из которых на графе состояний ведут стрелки в состояние S i .

Марковский случайный процесс с дискретными состояниями и непрерывным временем иногда называют «непрерывной цепью Маркова» . Для такого процесса вероятность перехода из состояния S i в S j для любого момента времени равна нулю. Вместо вероятности перехода p ij рассматривают плотность вероятности перехода которая определяется как предел отношения вероятности перехода из состояния S i в состояние S j за малый промежуток времени , примыкающий к моменту t, к длине этого промежутка, когда она стремится к нулю. Плотность вероятности перехо­да может быть как постоянной (), так и зависящей от времени . В первом случае марковский случайный процесс с дискретными состояниями и непрерывным временем называется однородным. Типичный пример такого процесса - случайный процесс Х(t), представ­ляющий собой число появившихся до момента t событий в простейшем потоке (рис. 5.2).

При рассмотрении случайных процессов с дискретными состояниями и непрерывным временем удобно представлять переходы системы S из состояния в состояние как происходящие под влиянием некоторых по­токов событий. При этом плотности вероятностей перехода получают смысл интенсивностей соответствующих потоков событий (как только происходит первое событие в потоке с интенсивностью , система из со­стояния S i скачком переходит в Sj) . Если все эти потоки пуассоновские, то процесс, протекающий в системе S, будет мар­ковским.

Рассматривая марковские случайные процессы с дискретными со­стояниями и непрерывным временем, удобно пользоваться гра­фом состояний, на котором против каждой стрелки, ведущей из состоя­ния S i , в S j проставлена интенсивность потока событий, переводящего систему по данной стрелке (рис.5.6). Такой граф состояний называ­ют размеченным.

Вероятность того, что система S, находящаяся в состоянии S i , за эле­ментарный промежуток времени () перейдет в состояние S j (эле­мент вероятности перехода из S i в S j ), есть вероятность того, что за это время dt появится хотя бы одно событие потока, переводящего систему S из S i в S j . С точностью до бесконечно малых высших порядков эта вероятность равна .

Потоком вероятности перехода из состояния Si в Sj называется вели­чина (здесь интенсивность может быть как зависящей, так и не­зависящей от времени).

Рассмотрим случай, когда система S имеет конечное число состояний S 1, S 2 ,..., S п. Для описания случайного процесса, протекающего в этой системе, применяются вероятности состояний

(5.13)

где р i (t) - вероятность того, что система S в момент t находится в состоя­нии S i:

. (5.14)

Очевидно, для любого t

Для нахождения вероятностей (5.13) нужно решить систему диф­ференциальных уравнений (уравнений Колмогорова), имеющих вид

(i=1,2,…,n),

или, опуская аргумент t у переменных р i ,

(i=1,2,…,n ). (5.16)

Напомним, что интенсивности потоков ij могут зависеть от времени .

Уравнения (5.16) удобно составлять, пользуясь размеченным гра­фом состояний системы и следующим мнемоническим правилом: произ­водная вероятности каждого состояния равна сумме всех потоков веро­ятности, переводящих из других состояний в данное, минус сумма всех потоков вероятности, переводящих из данного состояния в другие. Напри­мер, для системы S, размеченный граф состояний которой дан на рис. 10.6, система уравнений Колмогорова имеет вид

(5.17)

Так как для любого t выполняется условие (5.15), можно любую из вероятностей (5.13) выразить через остальные и таким образом уменьшить число уравнений на одно.

Чтобы решить систему дифференциальных уравнений (5.16) для вероятностей состояний р 1 (t) p 2 (t ), …, p n (t ), нужно задать начальное распределение вероятностей

p 1 (0),p 2 (0), …,p i (0), …,p n (0 ), (5.18)

сумма которых равна единице.

Если, в частности, в начальный момент t = 0 состояние системы S в точности известно, например, S(0) =S i , и р i (0) = 1, то остальные вероятноcти выражения (5.18) равны нулю.

Во многих случаях, когда процесс, протекающий в системе, длится достаточно долго, возникает вопрос о предельном поведении ве­роятностей р i (t) при . Если все потоки событий, переводящие систему из состояния в состояние, являются простейшими (т.е. стацио­нарными пуассоновскими с постоянными интенсивностями ), в неко­торых случаях существуют финальные (или предельные) вероятности со­стояний

, (5.19)

независящие от того, в каком состоянии система S находилась в началь­ный момент. Это означает, что с течением времени в системе S устанавли­вается предельный стационарный режим, в ходе которого она переходит из состояния в состояние, но вероятности состояний уже не меняются. В этом предельном режиме каждая финальная вероятность может быть истолкована как среднее относительное время пребывания системы в дан­ном состоянии.

Систему, в которой существуют финальные вероятности, называют эргодической. Если система S имеет конечное число состояний S 1 , S 2 , . . . , S n , то для су­ществования финальных вероятностей достаточно, чтобы из любого со­стояния системы можно было (за какое-то число шагов) перейти в любое другое. Если число состояний S 1 , S 2 , . . . , S n , бесконечно, то это условие перестает быть достаточным, и существование финальных вероятностей зависит не только от графа состояний, но и от интенсивностей .

Финальные вероятности состояний (если они существуют) могут быть получены решением системы линейных алгебраических уравнений, они получаются из дифференциальных уравнений Колмогорова, если по­ложить в них левые части (производные) равными нулю. Однако удобнее составлять эти уравнения непосредственно по графу состояний, пользу­ясь мнемоническим правилом: для каждого состояния суммарный выхо­дящий поток вероятности равен суммарному входящему. Например, для системы S, размеченный граф состояний которой дан на р ис. 5.7, уравнения для финальных вероятностей состояний имеют вид

(5.20)

Таким образом, получается (для системы S с п состояниями) система n однород­ных линейных алгебраических уравнений с n неизвест­ными р 1, р 2 , ..., р п. Из этой системы можно найти неизвестные р 1 , р 2 , . . . , р п с точностью до произвольного множителя. Чтобы найти точные значения р 1 ,..., р п, к уравнениям добавляют нормировочное условие p 1 + p 2 + … + p п =1, пользуясь которым можно выразить любую из ве­роятностей p i через другие (и соответственно отбросить одно из уравне­ний).

Вопросы для повторения

1 Что называют случайной функцией, случайным процессом, сечением случайного процесса, его реализацией?

2 Как различаются случайные процессы по своей структуре и характеру протекания во времени?

3 Какие законы распределения случайной функции применяют для описания случайной функции?

4 Что представляет собой функция математического ожидания случайной функции, в чем ее геометрический смысл?

5 Что представляет собой функция дисперсии случайной функции, в чем ее геометрический смысл?

6 Что представляет собой корреляционная функция случайного процесса, и что она характеризует?

7 Каковы свойства корреляционной функции случайного процесса?

8 Для чего введено понятие нормированной корреляционной функции?

9 Объясните как по опытным данным получить оценки функций характеристик случайного процесса?

10 В чем отличие взаимной корреляционной функции от автокорреляционной функции?

11 Какой случайный процесс относят к стационарным процессам в узком смысле и в широком?

12 В чем заключается свойство эргодичности стационарного случайного процесса?

13 Что понимают под спектральным разложением стационарного случайного процесса и в чем его необходимость?

14 Какова связь между корреляционной функцией и спектральной плотностью стационарной случайной функции?

15 Что называют простейшим потоком событий?

16 Какой случайный процесс называют марковской цепью? В чем заключается методика расчета ее состояний?

17 Что представляет собой марковский случайный процесс с дискретными состояниями и непрерывным временем?

M(U)=10, D(U)=0.2 .

6.5 Найти нормированную взаимную корреляционную функцию случайных функций X(t)=t*U и Y(t)=(t+1)U , где U – случайная величина, причем дисперсия D(U)=10 .

Понравилась статья? Поделитесь ей