Контакты

Основные свойства альдегидов и кетонов. Кетоны: химические свойства и определение

АЛЬДЕГИДЫ И КЕТОНЫ

1. Определение альдегидов и кетонов, различие в строении.

2. Номенклатура и изомерия

3. Физические свойства

4. Химические свойства. Строение карбонильной группы (электронные эффекты группы).

5. Применение альдегидов и кетонов.

6. Влияние на здоровье человека и природу.

Альдегиды и кетоны кислородсодержащие органические соединения, содержа-щие карбонильную группу (-С=О).

Общая формула карбонильных соединений:

– алкильные радикалы (СН3-. С2Н5-)

Номенклатура альдегидов и кетонов

Для альдегидов используется тривиальная, рациональная номенклатура и номенклатура ИЮПАК (систематическая).

Тривиальные названия альдегидов производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Муравьиный альдегид

(формальдегид)

Уксусный альдегид (ацетальдегид)

Пропионовый

Масляный

Изомасляный

По рациональной номенклатуре названия альдегидов строятся с использованием в качестве основы названия уксусного альдегида. Более сложные альдегиды рассматриваются как производные с замещением атомов водорода в метильной группе уксусного альдегида на более сложные радикалы.

Уксусный альдегид

Метилуксусный альдегид

Этилуксусный альдегид

Диметилуксусный альдегид

Согласно номенклатуре ИЮПАК названия альдегидов строят от названия соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи всегда начинают с карбонильного атома углерода, поэтому номер группы не ставится. Цифрами и приставками указывается положение и число заместителей.

пропаналь

бутаналь

2-метилпропаналь

2,3-диметилбутаналь

Номенклатура кетонов.

Для кетонов тривиальное название используется для первого представителя – ацетона (СН3СОСН3).

По рациональной номенклатуре названия кетонов строятся путем перечисления радикалов связанных с карбонильной группой в порядке возрастания их молекулярной массы и добавлением основы «кетон».

диметилкетон (ацетон)

метилэтилкетон

пропилизопропилкетон

В соответствии с номенклатурой ИЮПАК в кетоне выбирается самая длинная цепь, содержащая –С=О-группу, нумерация начинается с того конца, где эта группа располагается. Названия кетонов строятся от названия углеводородов с прибавлением окончания –ОН , цифрой обязательно указывается положение функциональной группы. Также цифрами и приставками указывается положение и число заместителей.

пропанон

Бутанон-2

2-метил-гексанон-3

Строение карбонильной группы C=O

Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp2-гибридизации. Углерод своими sp2-гибридными орбиталями образует 3 s-связи (одна из них - связь С–О), которые располагаются в одной плоскости под углом около 120° друг к другу. Одна из трех sp2-орбиталей кислорода участвует в s-связи С–О, две другие содержат неподеленнные электронные пары.

https://pandia.ru/text/78/082/images/image018_37.gif" alt="Связь С=О (4985 байт)" width="365" height="149 src=">

Связь С=О сильно поляризована. Электроны кратной связи С=О, в особенности более подвижные p-электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

https://pandia.ru/text/78/082/images/image020_16.jpg" width="311" height="234 src=">

При окислении спиртов используется медный катализатор.

2) Другой способ – каталитическая гидратация ацетилена , промежуточное соединение – виниловый спирт (этот способ был рассмотрен в первом модуле – и носит название реакции Кучерова).

Если вместо ацетилена взять метилацетилен, то получится ацетон.

3) Озонолиз алкенов также был подробно изучен в первом модуле (тема АЛКЕНЫ)

4) В промышленности получение осуществляется пиролизом карбоновых кислот и их солей.

5) Гидролиз дигалогенпроизводных алканов и метиларенов.

Эта реакция приводит к альдегидам, если оба атома галогена находятся у одного атома углерода. Если атом находится в конце цепи – получается альдегид, если в середине – кетон.

6) Реакция Фриделя-Крафтса (рассмотрена в реакциях ацилирования аренов, электрофильное замещение ароматических углеводородов).

Химические свойства альдегидов и кетонов

Химические свойства определяются особенностями строения карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи.

Кроме того, за счет смещения электронной плотности атомы водорода расположенные в α-положении относительно карбонильной группы приобретают подвижность, это свойство называется СН-кислотность.

Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R.

I. Присоединение по двойной связи С=О, взаимодействие с О-, N-, S-нуклеофилами

1) При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси - и гидрокси-группу у одного атома углерода. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы. Реакцию катализируют кислоты и основания. В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.

https://pandia.ru/text/78/082/images/image029_20.gif" width="359" height="83 src=">гидроксинитрил

3) Точно так же (раскрывая двойную связь С=О) реагируют с альдегидами и кетонами аммиак и амины , продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. Эта реакция позволяет различать альдегиды и кетоны.

В случае взаимодействия альдегида и аммиака получаются имины, а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют более медленно и сложно:

https://pandia.ru/text/78/082/images/image033_18.gif" width="290" height="140 src=">

5) Реакции с гидроксиламином осуществляются с выделением воды. Продуктом взаимодействия альдегида или кетона с гидроксиламином является оксим . Такие соединения представляют интерес для органического синтеза.

https://pandia.ru/text/78/082/images/image035_14.gif" width="588" height="115 src=">

7) Альдегиды и кетоны реагируют и с галогеннуклеофилами . В качестве реагентов применяют галогениды фосфора и серы, но чаще всего – пентахлорид фосфора.

https://pandia.ru/text/78/082/images/image037_15.gif" width="350" height="62 src=">

Роль катализатора заключается в ускорении процесса енолизации (суть работы катализатора рассмотрим ниже на примере реакции конденсации).

2) Реакции конденсации . Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт).

Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания. Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид (кротоновой альдегид). Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов.

Кетоны также способны участвовать в альдольной конденсации, а вторая стадия – кротоновая конденсация, для них затруднена.

https://pandia.ru/text/78/082/images/image040_12.gif" width="420 height=282" height="282">

Гидроксил-ион является инициатором реакции, он отрывает протон от метильной группы альдегида (стадия I). Затем метиленовая компонента атакует карбонильную компоненту – вторую молекулу карбонильного соединения (стадия II). Продукты альдольной конденсации в присутствии оснований легко отщепляют воду (стадия III).

2) Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН2 или замещенная метиленовая группа (СНR либо СR2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол.

III Восстановление и окисление

Альдегиды и кетоны представляют собой как бы промежуточные соединения между спиртами и карбоновыми кислотами : восстановление приводит к спиртам, а окисление – к карбоновым кислотам. При действии Н2 (в присутствии катализатора Pt или Ni), альдегиды восстанавливаются, образуя первичные спирты, а кетоны – вторичные спирты (подробно эти реакции были рассмотрены в лекции «Спирты»).

Окисление альдегидов до карбоновых кислот проходит достаточно легко в присутствии О2 или при действии слабых окислителей, таких как аммиачный раствор гидроксида серебра. Эта реакция сопровождается образованием серебряного зеркала на внутренней поверхности реакционного прибора (чаще, обычной пробирки), ее используют для качественного обнаружения альдегидной группы .

Альдегиды окисляются фелинговой жидкостью. Реактив Фелинга – это водно-щелочной раствор образованный из Сu(ОН)2 и калиево-натриевой соли винной кислоты (сегнетовой соли). При сливании растворов образуется комплексное соединение (типа гликолята меди). Далее альдегид восстанавливает двухвалентную медь до одновалентной. Кетоны в такие реакции не вступают.

https://pandia.ru/text/78/082/images/image044_12.gif" width="433 height=99" height="99">

Для кетонов тоже существуют качественные реакции – например, иодоформная проба. Эту реакцию дают метилкетоны (в ходе реакции окраска йода исчезает и одновременно выделяется осадок СH3I).

3CH3CO-R + 3I2 + 4NaOH = CH3I¯ + RCOONa + 3NaI + 3H2O

Применение альдегидов и кетонов

Формальдегид Н2С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН3)2С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С6Н5)2С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия.

ванилин бензальдегид бензофенон

Бензальдегид с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Влияние на здоровье человека и природу

Альдегиды – химически активные вещества, обладающие токсическим действием (наркотическое и раздражающе действуют на слизистые оболочки). С увеличением молекулярной массы наркотическое действие соединений усиливается. Низшие и непредельные альдегиды обладают мутагенными и канцерогенными свойствами.

При концентрации альдегидов в водоеме свыше 50 мг/л погибает рыба, а попадание альдегидов в сточные воды тормозит их биохимическую очистку.

Токсическое действие кетонов проявляется в поражении ЦНС. Из организма выводятся медленно из-за хорошей растворимости в крови.

ОПРЕДЕЛЕНИЕ

Альдегиды – органические вещества, относящиеся к классу карбонильных соединений, содержащих в своем составе функциональную группу –СН = О, которая называется карбонильной.

Общая формула предельных альдегидов и кетонов C n H 2 n O. В названии альдегидов присутствует суффикс –аль.

Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН 2 = О, ацетальдегид (уксусный альдегид) – СН 3 -СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

СН 3 -СН 2 -СН 2 -СН = О (бутаналь);

СН 3 -СН(СН 3)-СН = О (2-метилпентаналь);

СН 3 -С(СН 2 -СН 3) = О (метилэтилкетон).

Химические свойства альдегидов

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; α-СН кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

1. Реакции присоединения:

— воды с образованием гем-диолов

R-CH = O + H 2 O ↔ R-CH(OH)-OH;

— спиртов с образованием полуацеталей

CH 3 -CH = O + C 2 H 5 OH ↔CH 3 -CH(OH)-O-C 2 H 5 ;

— тиолов с образованием дитиоацеталей (в кислой среде)

CH 3 -CH = O + C 2 H 5 SH ↔ CH 3 -CH(SC 2 H 5)-SC 2 H 5 + H 2 O;

— гидросульфита натрия с образованием α-гидроксисульфонатов натрия

C 2 H 5 -CH = O + NaHSO 3 ↔ C 2 H 5 -CH(OH)-SO 3 Na;

— аминов с образованием N-замещенных иминов (основания Шиффа)

C 6 H 5 CH = O + H 2 NC 6 H 5 ↔ C 6 H 5 CH = NC 6 H 5 + H 2 O;

— гидразинов с образованием гидразонов

CH 3 -CH = O + 2 HN-NH 2 ↔ CH 3 -CH = N-NH 2 + H 2 O;

— циановодородной кислоты с образованием нитрилов

CH 3 -CH = O + HCN ↔ CH 3 -CH(N)-OH;

— восстановление. При взаимодействии альдегидов с водородом получаются первичные спирты:

R-CH = O + H 2 → R-CH 2 -OH;

2. Окисление

— реакция «серебряного зеркала» — окисление альдегидов аммиачным раствором оксида серебра

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓;

— окисление альдегидов гидроксидом меди (II), в результате которого выпадает осадок оксида меди (I) красного цвета

CH 3 -CH = O + 2Cu(OH) 2 → CH 3 -COOH + Cu 2 O↓ + 2H 2 O;

Эти реакции являются качественными реакциями на альдегиды.

Физические свойства альдегидов

Первый представитель гомологического ряда альдегидов – формальдегид (муравьиный альдегид) – газообразное вещество (н.у.), альдегиды неразветвленного строения и состава С 2 -С 12 – жидкости, С 13 и длиннее – твердые вещества. Чем больше атомов углерода входит в состав неразветвленного альдегида, тем выше его температура кипения. С увеличением молекулярной массы альдегидов увеличиваются значения величин их вязкости, плотности и показателя преломления. Формальдегид и ацетальдегид способны смешиваться с водой в неограниченных количествах, однако, с ростом углеводородной цепи эта способность альдегидов снижается. Низшие альдегиды обладают резким запахом.

Получение альдегидов

Основные способы получения альдегидов:

— гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо 2 (СО) 8) Реакция проводится при нагревании до 130С и давлении 300 атм

СН 3 -СН = СН 2 + СО +Н 2 →СН 3 -СН 2 -СН 2 -СН = О + (СН 3) 2 СНСН = О;

— гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

НС≡СН + Н 2 О → СН 3 -СН = О;

— окисление первичных спиртов (реакция протекает при нагревании)

СН 3 -СН 2 -ОН + CuO → CH 3 -CH = O + Cu + H 2 O.

Применение альдегидов

Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.) используют в качестве ингредиентов в парфюмерии.

Примеры решения задач

ПРИМЕР 1

Задание Бромированием С n H 2 n +2 получили 9,5 г монобромида, который при обработке разбавленным раствором NaOH превратился в кислородсодержащее соединение. Пары его с воздухом пропущены над раскаленной медной сеткой. При обработке образовавшегося при этом нового газообразного вещества избытком аммиачного раствора Ag 2 O выделилось 43,2 г осадка. Какой углеводород был взят и в каком количестве, если выход на стадии бромирования 50%, остальные реакции протекают количественно.
Решение Запишем уравнения всех протекающих реакций:

C n H 2n+2 + Br 2 = C n H 2n+1 Br + HBr;

C n H 2n+1 Br + NaOH = C n H 2n+1 OH + NaBr;

C n H 2n+1 OH → R-CH = O;

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓.

Осадок выделившийся в последней реакции – это серебро, следовательно, можно найти количество вещества выделившегося серебра:

M(Ag) = 108 г/моль;

v(Ag) = m/M = 43,2/108 = 0,4 моль.

По условию задачи, после пропускания вещества полученного в реакции 2 над раскаленной металлической сеткой образовался газ, а единственный газ –альдегид – это метаналь, следовательно, исходное вещество – это метан.

CH 4 + Br 2 = CH 3 Br + HBr.

Количество вещества бромметана:

v(CH 3 Br) = m/M = 9,5/95 = 0,1 моль.

Тогда, количество вещества метана, необходимое для 50% выхода бромметана – 0,2 моль. М(CH 4) = 16 г/моль. Следовательно масса и объем метана:

m(CH 4) = 0,2×16 = 3,2 г;

V(CH 4) = 0,2×22,4 = 4,48 л.

Ответ Масса метана — масса 3,2 г, объем метана-4,48 л

ПРИМЕР 2

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: бутен-1 → 1-бромбутан + NaOH → А – Н 2 → В + OH → С + HCl → D.
Решение Для получения 1-бромбутана из бутена-1 необходимо провести реакцию гидробромирования в присутствии пероксидных соединений R 2 O 2 (реакция протекает против правила Марковникова):

CH 3 -CH 2 -CH = CH 2 + HBr → CH 3 -CH 2 -CH 2 -CH 2 Br.

При взаимодействии с водным раствором щелочи 1-бромбутан подвергается гидролизу с образованием бутанола-1 (А):

CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH → CH 3 -CH 2 -CH 2 -CH 2 OH + NaBr.

Бутанол-1 при дегидрировании образует альдегид – бутаналь (В):

CH 3 -CH 2 -CH 2 -CH 2 OH → CH 3 -CH 2 -CH 2 -CH = О.

Аммиачный раствор оксида серебра окисляет бутаналь до аммонийной соли – бутирата аммония (С):

CH 3 -CH 2 -CH 2 -CH = О + OH →CH 3 -CH 2 -CH 2 -COONH 4 + 3NH 3 + 2Ag↓ +H 2 O.

Бутират аммония при взаимодействии с соляной кислотой образует масляную (бутановую) кислоту (D):

CH 3 -CH 2 -CH 2 -COONH 4 + HCl → CH 3 -CH 2 -CH 2 -COOH + NH 4 Cl.

Содержание статьи

АЛЬДЕГИДЫ И КЕТОНЫ – органические соединения, содержащие фрагмент >C=O (углерод, связанный двойной связью с кислородом, его называют карбонильным). У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O), а в кетонах – с двумя органическими группами (общая формула R 2 С=О).

Номенклатура альдегидов и кетонов. Группу –(Н)С=О называют альдегидной, для связывания с органическими группами у нее есть всего одна свободная валентность, это позволяет ей находится только на конце углеводородной цепи (но не в середине). При составлении названия альдегида указывается название соответствующего углеводорода, к которому добавляется суффикс «аль», например, метаналь Н 2 С=О, этаналь Н 3 СС(Н)=О, пропаналь Н 3 ССН 2 С(Н)=О. В более сложных случаях углеродную цепь группы R нумеруют, начиная с карбонильного углерода, затем с помощью числовых индексов указывают положение функциональных групп и различных заместителей.

Рис. 1. НОМЕНКЛАТУРА АЛЬДЕГИДОВ . Замещающие и функциональные группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Для некоторых альдегидов часто используют тривиальные (упрощенные) названия, сложившиеся исторически, например, формальдегид Н 2 С=О, ацетальдегид Н 3 СС(Н)=О, кротоновый альдегид СН 3 СН=CHC(H)=O.

В отличие от альдегидной, кетонная группа >C=O может находиться также в середине углеводородной цепи, поэтому в простых случаях указывают названия органических групп (упоминая их в порядке увеличения) и добавляют слово «кетон»: диметилкетон CH 3 –CO–CH 3 , метилэтилкетон CH 3 CH 2 –CO–CH 3 . В более сложных случаях положение кетонной группы в углеводородной цепи указывают цифровым индексом, добавляя суффикс «он ». Нумерацию углеводородной цепи начинают с того конца, который находится ближе к кетонной группе (рис. 2).

Рис. 2. НОМЕНКЛАТУРА КЕТОНОВ . Замещающие и функциональные группы и соответствующие им цифровые индексы выделены различными цветами.

Для простейшего кетона CH 3 –CO–CH 3 принято тривиальное название – ацетон.

Химические свойства альдегидов и кетонов

определяются особенностями карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи. Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R, наиболее легко участвует в реакциях формальдегид Н 2 С=О.

1. Присоединение по двойной связи С=О.

При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR) 2 . Реакцию катализируют кислоты и основания (рис. 3А). В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.

Сходным образом альдегиды и кетоны реагируют с синильной кислотой HCN, образуя гидроксинитрилы – соединения, содержащие у одного атома углерода ОН- и CN-группу: >C(OH)Cє N (рис. 3Б). Реакция примечательна тем, что позволяет увеличивать углеродную цепь (возникает новая связь С-С).

Точно так же (раскрывая двойную связь С=О) аммиак и амины реагируют с альдегидами и кетонами, продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. В случае аммиака получаются имины (рис. 3В), а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR (рис. 3Г). Продукт взаимодействия формальдегида с аммиаком несколько иной – это результат циклизации трех промежуточных молекул, в результате получается каркасное соединение гексаметилентетрамин, используемое в медицине как препарат уротропин (рис. 3Д).

2. Реакции конденсации. Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт). Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания (рис. 4А). Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид (рис. 4А, кротоновой альдегид). Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов. Кетоны также способны участвовать в альдольной конденсации (рис. 4Б), а вторая стадия – кротоновая конденсация, для них затруднена. В альдольной конденсации могут совместно участвовать молекулы различных альдегидов, а также одновременно альдегид и кетон, во всех случаях происходит удлинение углеродной цепи. Получившийся на последней стадии (рис. 4А) кротоновый альдегид, обладая всеми свойствами альдегидов, может далее участвовать в альдольной и кротоновой конденсации при взаимодействии с очередной порцией ацетальдегида, из которого он и был получен (рис. 4В). Таким способом можно удлинять углеводородную цепь, получая соединения, в которых чередуются простые и двойные связи: –СН=СН–СН=СН–.

Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН 2 или замещенная метиленовая группа (СНR либо СR 2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол (рис. 5.).

Рис. 5. КОНДЕНСАЦИЯ ФЕНОЛА С ФОРМАЛЬДЕГИДОМ

3. Полимеризация карбонильных соединений протекает с раскрытием двойной связи С=О и свойственна, в основном, альдегидам. При упаривании в вакууме водных растворов формальдегида образуется смесь циклических соединений (в основном, триоксиметилен) и линейных продуктов с незначительной длиной цепи n = 8–12 (параформ). Полимеризацией циклического продукта получают полиформальдегид (рис. 6) – полимер с высокой прочностью и хорошими электроизоляционными свойствами, используемый как конструкционный материал в машино- и приборостроении.

Рис. 6. ПРОДУКТЫ ПОЛИМЕРИЗАЦИИ ФОРМАЛЬДЕГИДА

4. Восстановление и окисление. Альдегиды и кетоны представляют собой как бы промежуточные соединения между спиртами и карбоновыми кислотами : восстановление приводит к спиртам, а окисление –- к карбоновым кислотам. При действии Н 2 (в присутствии катализатора Pt или Ni) либо других восстанавливающих реагентов, например, LiAlH 4 , альдегиды восстанавливаются, образуя первичные спирты, а кетоны – вторичные спирты (рис. 7, схемы А и Б).

Окисление альдегидов до карбоновых кислот проходит достаточно легко в присутствии О 2 или при действии слабых окислителей, таких как аммиачный раствор гидроксида серебра (рис. 7В). Эта эффектная реакция сопровождается образованием серебряного зеркала на внутренней поверхности реакционного прибора (чаще, обычной пробирки), ее используют для качественного обнаружения альдегидной группы. В отличие от альдегидов, кетоны более устойчивы к окислению, при их нагревании в присутствии сильных окислителей, например, КМnО 4 , образуются смеси карбоновых кислот, имеющих укороченную (в сравнении с исходным кетоном) углеводородную цепь.

Рис. 7. ВОССТАНОВЛЕНИЕ И ОКИСЛЕНИЕ АЛЬДЕГИДОВ И КЕТОНОВ

Дополнительным подтверждением того, что альдегиды занимают промежуточное положение между спиртами и кислотами, служит реакция, в результате которой из двух молекул альдегида получаются спирт и карбоновая кислота (рис. 8А), т.е. одна молекула альдегида окисляется, а другая восстанавливается. В некоторых случаях два полученных соединения – спирт и карбоновая кислота – далее реагируют между собой, образуя сложный эфир (рис.8Б).

Рис. 8. ПРОТЕКАЮЩЕЕ ОДНОВРЕМЕННО ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ АЛЬДЕГИДОВ

Получение альдегидов и кетонов.

Наиболее универсальный способ – окисление спиртов, при этом из первичных спиртов образуются альдегиды, а из вторичных – кетоны (рис. 9А и Б). Это реакции, обратные реакциям на рис. 7А и Б. Реакция поворачивает «вспять», если изменен действующий реагент (окислитель вместо восстановителя) и катализатор, при окислении спиртов эффективен медный катализатор.

В промышленности ацетальдегид получают окислением этилена (рис. 9В), на промежуточной стадии образуется спирт, у которого ОН-группа «примыкает» к двойной связи (виниловый спирт), такие спирты неустойчивы и сразу изомеризуются в карбонильные соединения. Другой способ – каталитическая гидратация ацетилена (рис. 9Г), промежуточное соединение – виниловый спирт. Если вместо ацетилена взять метилацетилен, то получится ацетон (рис. 9Д). Промышленный способ получения ацетона – окислением кумола. Ароматические кетоны, например, ацетофенон, получают каталитическим присоединением ацетильной группы к ароматическому ядру (рис. 9Е).

Применение альдегидов и кетонов.

Формальдегид Н 2 С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН 3) 2 С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С 6 Н 5) 2 С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН 3 (СН 2) 7 С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин (рис. 10) содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия (рис. 10).

Рис. 10. ВАНИЛИН

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С 6 Н 5) 2 С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетоновучаствовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Михаил Левицкий

Альдегиды и кетоны имеют в своем составе карбонильную функциональную группу >С=О и относятся к классу карбонильных соединений. Также их называют оксосоединениями. Несмотря на то что эти вещества относятся к одному классу, из-за особенностей строения их все же разделяют на две большие группы.

В кетонах атом углерода из группы >С=О соединен с двумя одинаковыми или различными углеводородными радикалами, обычно они имеют вид: R-СО-R". Такую форму карбонильной группы называют еще кетогруппой или оксогруппой. В альдегидах же карбонильный углерод соединен только с одним углеводородным радикалом, а оставшаяся валентность занимается атомом водорода: R-СОН. Такую группу принято называть альдегидной. Благодаря этим различиям в строении альдегиды и кетоны ведут себя немного по-разному при взаимодействии с одними и теми же веществами.

Карбонильная группа

Атомы С и О в этой группе находятся в sp 2 -гибридизированном состоянии. Углерод за счет sp 2 -гибридных орбиталей имеет 3 σ-связи, расположенные под углом примерно в 120 градусов в одной плоскости.

Атом кислорода обладает гораздо большей электроотрицательностью, чем углеродный атом, а поэтому стягивает на себя подвижные электроны π-связи в группе >С=О. Поэтому на атоме О возникает избыточная электронная плотность δ - , а на атоме С, напротив, происходит ее уменьшение δ + . Этим и объясняются особенности свойств альдегидов и кетонов.

Двойная связь С=О более прочная, чем С=С, но вместе с тем и более реакционно способная, что объясняется большой разницей в электроотрицательностях атомов углерода и кислорода.

Номенклатура

Как и для всех других классов органических соединений, существуют различные подходы к наименованию альдегидов и кетонов. В соответствии с положениями номенклатуры ИЮПАК, наличие альдегидной формы карбонильной группы обозначается суффиксом -аль, а кетонной -он. Если карбонильная группа является старшей, то она определяет порядок нумерации атомов С в основной цепи. В альдегидной карбонильный атом углерода является первым, а в кетонах атомы С нумеруют с того края цепи, к которому ближе группа >С=О. С этим связана необходимость обозначать положение карбонильной группы в кетонах. Делают это, записывая соответствующую цифру после суффикса -он.

Если карбонильная группа не является старшей, то по правилам ИЮПАК ее наличие указывают приставкой -оксо для альдегидов и -оксо (-кето) для кетонов.

Для альдегидов широко применяют тривиальные названия, получаемые от наименования кислот, в которые они способны превращаться при окислении с заменой слова "кислота" на "альдегид":

  • СΗ 3 -СОН уксусный альдегид;
  • СΗ 3 -СН 2 -СОН пропионовый альдегид;
  • СΗ 3 -СН 2 -СН 2 -СОН масляный альдегид.

Для кетонов распространены радикально функциональные названия, которые складываются из наименований левого и правого радикалов, соединенных с карбонильным атомом углерода, и слова "кетон":

  • СΗ 3 -СО-СН 3 диметилкетон;
  • СΗ 3 -СΗ 2 -СО-СН 2 -СН 2 -СН 3 этилпропилкетон;
  • С 6 Η 5 -СО-СΗ 2 -СΗ 2 -СΗ 3 пропилфенилкетон.

Классификация

В зависимости от характера углеводородных радикалов класс альдегидов и кетонов делят на:

  • предельные - атомы С связаны друг с другом только одинарными связями (пропаналь, пентанон);
  • непредельные - между атомами С имеются двойные и тройные связи (пропеналь, пентен-1-он-3);
  • ароматические - содержат в своей молекуле бензольное кольцо (бензальдегид, ацетофенон).

По числу карбонильных и наличию других функциональных групп различают:

  • монокарбонильные соединения - содержат только одну карбонильную группу (гексаналь, пропанон);
  • дикарбонильные соединения - содержат две карбонильные группы в альдегидной и/или кетонной форме (глиоксаль, диацетил);
  • карбонильные соединения, содержащие также другие функциональные группы, которые, в свою очередь, делятся на галогенкарбонильные, гидроксикарбонильные, аминокарбонильные и т.д.

Изомерия

Наиболее характерной для альдегидов и кетонов является структурная изомерия. Пространственная возможна тогда, когда в углеводородном радикале присутствует асимметрический атом, а также двойная связь с различными заместителями.

  • Изомерия углеродного скелета. Наблюдается у обоих типов рассматриваемых карбонильных соединений, но начинается с бутаналя в альдегидах и с пентанона-2 в кетонах. Так, бутаналь СН 3 -СΗ 2 -СΗ 2 -СОН имеет один изомер 2-метилпропаналь СΗ 3 -СΗ(СΗ 3)-СОН. А пентанон-2 СΗ 3 -СО-СΗ 2 -СΗ 2 -СΗ 3 изомерен 3-метилбутанону-2 СΗ 3 -СО-СΗ(СΗ 3)-СΗ 3 .
  • Межклассовая изомерия. Оксосоединения с одинаковым составом изомерны между собой. Например, составу С 3Η 6 О соответствуют пропаналь СН 3 -СΗ 2 -СОН и пропанон СΗ 3 -СО-СΗ 3 . А молекулярная формула альдегидов и кетонов С 4 Н 8 О подходит бутаналю СН 3 -СΗ 2 -СΗ 2 -СОН и бутанону СН 3 -СО-СΗ 2 -СΗ 3 .

Также межклассовыми изомерами для карбоксильных соединений являются циклические оксиды. Например, этаналь и этиленоксид, пропанон и пропиленоксид. Кроме того, непредельные спирты и простые эфиры также могут иметь общий состав и оксосоединениями. Так, молекулярную формулу С 3 Н 6 О имеют:

  • СΗ 3 -СΗ 2 -СОН - пропаналь;
  • СΗ 2 =СΗ-СΗ 2 -ОН - ;
  • СΗ 2 =СΗ-О-СН 3 - метилвиниловый эфир.

Физические свойства

Несмотря на то что молекулы карбонильных веществ полярны, в отличие от спиртов, альдегиды и кетоны не имеют подвижного водорода, а значит, не образуют ассоциатов. Следовательно, температуры плавления и кипения их несколько ниже, чем у соответствующих им спиртов.

Если сравнивать альдегиды и того же состава кетоны, то у последних t кип несколько выше. С увеличением молекулярной массы t пл и t кип оксосоединений закономерно повышаются.

Низшие карбонильные соединения (ацетон, формальдегид, уксусный альдегид) хорошо растворимы в воде, высшие же альдегиды и кетоны растворяются в органических веществах (спиртах, эфирах и т.д.).

Пахнут оксосоединения весьма различно. Низшие их представители имеют резкие запахи. Альдегиды, содержащие от трех до шести атомов С, пахнут очень неприятно, а вот высшие их гомологи наделены цветочными ароматами и даже применяются в парфюмерии.

Реакции присоединения

Химические свойства альдегидов и кетонов обусловлены особенностями строения карбонильной группы. Из-за того, что двойная связь С=О сильно поляризована, то под действием полярных агентов она легко переходит в простую одинарную связь.

1. Взаимодействие с Присоединение HCN в присутствии следов щелочей происходит с образованием циангидринов. Щелочь добавляют для повышения концентрации ионов CN - :

R-СОН + NCN ―> R-СН(ОН)-CN

2. Присоединение водорода. Карбонильные соединения легко могут восстанавливаться до спиртов, присоединяя водород по двойной связи. При этом из альдегидов получают первичные спирты, а из кетонов - вторичные. Реакции катализируются никелем:

Н 3 С-СОН + Н 2 ―> Н 3 С-СΗ 2 -ОΗ

Η 3 С-СО-СΗ 3 + Η 2 ―> Н 3 С-СΗ(ОΗ)-СΗ 3

3. Присоединение гидроксиламинов. Эти реакции альдегидов и кетонов катализируются кислотами:

Н 3 С-СОН + NH 2 OH ―> Η 3 С-СΗ=N-ОН + Н 2 О

4. Гидратация. Присоединение молекул воды к оксосоединениям приводит к образованию гем-диолов, т.е. таких двухатомных спиртов, в которых две гидроксильные группы присоединены к одному атому углерода. Однако такие реакции обратимы, полученные вещества тут же распадаются с образованием исходных веществ. Электроноакцепторные группы в данном случае смещают равновесие реакций в сторону продуктов:

>С=О + Η 2 <―> >С(ОΗ) 2

5. Присоединение спиртов. В ходе этой реакции могут получаться различные продукты. Если к альдегиду присоединяется две молекулы спирта, то образуется ацеталь, а если только одна, то полуацеталь. Условием проведения реакции является нагревание смеси с кислотой или водоотнимающим агентом.

R-СОН + НО-R" ―> R-СН(НО)-О-R"

R-СОН + 2НО-R" ―> R-СН(О-R") 2

Альдегиды с длинной углеводородной цепью склонны к внутримолекулярной конденсации, в результате которой образуются циклические ацетали.

Качественные реакции

Понятно, что при отличающейся карбонильной группе в альдегидах и кетонах химия их тоже различна. Порой необходимо понять, к какому из этих двух типов относится полученное оксосоединение. легче, чем кетоны, происходит это даже под действием оксида серебра или гидроксида меди (II). При этом карбонильная группа изменяется в карбоксильную и образуется карбоновая кислота.

Реакцией серебряного зеркала принято называть окисление альдегидов раствором оксида серебра в присутствии аммиака. Фактически в растворе образуется комплексное соединение, которое и воздействует на альдегидную группу:

Ag 2 O + 4NH 3 + Н 2 О ―> 2ОΗ

СΗ 3 -СОΗ + 2ОΗ ―> СН 3 -СОО-NH 4 + 2Ag + 3NH 3 +Н 2 О

Чаще записывают суть происходящей реакции более простой схемой:

СΗ 3 -СОΗ + Ag 2 O ―> СΗ 3 -СООΗ + 2Ag

В ходе реакции окислитель восстанавливается до металлического серебра и выпадает в осадок. При этом на стенках реакционного сосуда образуется тонкий серебряный налет, похожий на зеркало. Именно за это реакция и получила свое название.

Еще одной качественной реакцией, указывающей на разницу в строении альдегидов и кетонов, является действие на группу -СОН свежим Cu(OΗ) 2 . Готовят его добавлением щелочей к растворам солей меди двухвалентной. При этом образуется голубая суспензия, которая при нагревании с альдегидами меняет окраску на красно-коричневую за счет образования оксида меди (I):

R-СОН + Cu(OΗ) 2 ―> R-СООΗ + Cu 2 O + Η 2 О

Реакции окисления

Оксосоединения можно окислить раствором KMnO 4 при нагревании в кислой среде. Однако кетоны при этом разрушаются с образованием смеси продуктов, которые не имеют практической ценности.

Химическая реакция, отражающая данное свойство альдегидов и кетонов, сопровождается обесцвечиванием розоватой реакционной смеси. При этом из подавляющего большинства альдегидов получаются карбоновые кислоты:

СН 3 -СОН + KMnO 4 + H 2 SO 4 ―> СН 3 -СОН + MnSO 4 + K 2 SO 4 + Н 2 О

Формальдегид в ходе данной реакции окисляется до муравьиной кислоты, которая под действием окислителей распадается с образованием углекислого газа:

Н-СОН + KMnO 4 + H 2 SO 4 ―> СО 2 + MnSO 4 + K 2 SO 4 + Н 2 О

Для альдегидов и кетонов характерно полное окисление в ходе реакций горения. При этом образуются СО 2 и вода. Уравнение горения формальдегида имеет вид:

НСОН + O 2 ―> СО 2 + Н 2 О

Получение

В зависимости от объемов продуктов и целей их использования способы получения альдегидов и кетонов делят на промышленные и лабораторные. В химическом производстве карбонильные соединения получают окислением алканов и алкенов (нефтепродуктов), дегидрированием первичных спиртов и гидролизом дигалогеналканов.

1. Получение формальдегида из метана (при нагревании до 500 °С в присутствии катализатора):

СΗ 4 + О 2 ―> НСОН + Η 2 О.

2. Окисление алкенов (в присутствии катализатора и высокой температуре):

2СΗ 2 =СΗ 2 + О 2 ―> 2СН 3 -СОН

2R-СΗ=СΗ 2 + О 2 ―> 2R-СΗ 2 -СОΗ

3. Отщепление водорода от первичных спиртов (катализируется медью, необходимо нагревание):

СΗ 3 -СΗ 2 -ОН ―> СН 3 -СОН + Η 2

R-СН 2 -ОН ―> R-СОН + Н 2

4. Гидролиз дигалогеналканов щелочами. Обязательным условием является присоединенность обоих атомов галогенов к одному и тому же атому углерода:

СΗ 3 -C(Cl) 2 H + 2NaOH ―> СΗ 3 -СОΗ + 2NaCl + Н 2 О

В небольших количествах в лабораторных условиях карбонильные соединения получают гидратацией алкинов или окислением первичных спиртов.

5. Присоединение воды к ацетиленам происходит в присутствии в кислой среде (реакция Кучерова):

ΗС≡СΗ + Η 2 О ―> СН 3 -СОΗ

R-С≡СΗ + Η 2 О ―> R-СО-СН 3

6. Окисление спиртов с концевой гидроксильной группой проводят с использованием металлических меди или серебра, оксида меди (II), а также перманганатом или дихроматом калия в кислой среде:

R-СΗ 2 -ОΗ + О 2 ―> R-СОН + Н 2 О

Применение альдегидов и кетонов

Необходим для получения фенолформальдегидных смол, получаемых в ходе реакции его конденсации с фенолом. В свою очередь образующиеся полимеры необходимы для производства разнообразных пластмасс, древесно-стружечных плит, клея, лаков и многого другого. Также он применяется для получения лекарственных средств (уротропина), дезинфицирующих средств и используется для хранения биологических препаратов.

Основная часть этаналя идет на синтез уксусной кислоты и других органических соединений. Некоторые количества ацетальдегида используют в фармацевтическом производстве.

Ацетон широко применяется для растворения многих органических соединений, в числе которых лаки и краски, некоторых видов каучуков, пластмасс, природных смол и масел. Для этих целей он используется не только чистым, но и в смеси с другими органическими соединениями в составе растворителей марок Р-648, Р-647, Р-5, Р-4 и др. Также его используют для обезжиривания поверхностей при изготовлении различных деталей и механизмов. Большие количества ацетона требуются для фармацевтического и органического синтеза.

Многие альдегиды обладают приятными ароматами, благодаря чему применяются в парфюмерной промышленности. Так, цитраль имеет лимонный запах, бензальдегид пахнет горьким миндалем, фенилуксусный альдегид привносит в композицию аромат гиацинта.

Циклогексанон нужен для производства многих синтетических волокон. Из него получают адипиновую кислоту, в свою очередь применяемую как сырье для капролактама, нейлона и капрона. Также он используется в качестве растворителя жиров, природных смол, воска и ПВХ.

Слово альдегид было придумано как сокращение латинского alcohol dehydrogenatus - дегидрированный спирт, самый популярный альдегид - формальдегид, из него делают смолы, синтезируют лекарства и как консервант. Формула альдегида - R-CHO, соединение, в котором карбонильная группа соединена с водородом и радикалом.

Слово кетон произошло от слова ацетон, младшего соединения из семейства кетонов. Кетоны используются как растворители, лекарства и для синтеза полимеров. Формула кетона - R-C(O)-R, соединение, в котором карбонильная группа соединена с двумя радикалами.

Структура и свойства карбонильной группы

Карбонильная группа основана на связи атома углерода и атома кислорода посредством α- и π-связей. Резонансная структура группы определяет высокую полярность соединения и электронное облако сдвинуто в сторону кислорода: C δ+ =O δ- . Введение электроотрицательных элементов в уменьшает полярность связи, повышая положительный заряд молекулы. Нуклеофильные заместители увеличивают отрицательный заряд кислорода.

Атом углерода в карбонильной группе является сильным электрофилом (присоединяет электроны), поэтому большинство реакций альдегидов и кетонов осуществляется нуклеофильными реактивами (основания Льюиса). Логично, атом кислорода является сильным нуклеофилом, и реакции с атомом кислорода возможны с применением электрофилов (кислот Льюиса).

Реакция карбонильной группы с основанием Льюиса
(R)(R)C δ+ =O δ- + B: → (R)(R)C(B)-O
Реакция карбонильной группы с кислотой Льюиса
(R)(R)C δ+ =O δ- + Y: → (R)(R)C-O-Y

В дополнение, неразделённые электроны кислорода наделяют его слабыми свойствами основания, поэтому те альдегиды и цетоны, которые не растворяются в воде, растворяются в концентрированной серной кислоте.

Физические свойства карбонильной группы

Высокая полярность связи C=O образует высокий дипольный момент, из-за чего носители карбоксильной группы имеют более высокую температуру кипения, по сравнению с углеводородами.

Неразделённые электроны в атоме кислорода образуют водородную связь с молекулами воды, поэтому, начиная с пяти атомов углерода в радикалах, альдегиды и кетоны плохо растворяются в воде или не растворяются вовсе.

Альдегиды и кетоны, имеющие до 12 атомов углерода - жидкости. Алифатические соединения с карбонильной группой имеют плотность примерно 0.8, поэтому плавают на поверхности воды, циклогексанон имеет плотность около единицы, ароматические альдегиды и кетоны имеют плотность чуть больше, чем плотность воды.

Реакции альдегидов и кетонов

Присоединение воды

В процессе реакции воды с альдегидами и кетонами образуются диолы (гликоли, двухатомные спирты). Реакция протекает с использованием катализатора - кислотой или основанием и является двусторонней:

RR-CO + H-OH ↔ R R\ C /OH -OH

Присоединение нуклеофильных углеродов

Важные нуклеофильные соединения, реагирующие с альдегидами и кетонами - металлорганические соеденинения (органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода). Одни из представителей металлорганических соединений - реактивы Гриньяра (общая формула - R-Mg-X), в реакциях с альдегидами и кетонами образуют спирты:

RH-C=O + R-C - H 2 -Mg + -Cl - → RH-С-(O-MgCl)(CH 2 -R)
RH-С-(O-MgCl)(CH 2 -R) + H-OH → RH-C-CH 2 R + OH-Mg-Cl

Окисление альдегидов и кетонов

При окислении, альдегиды находятся на промежуточном этапе между спиртами и карбоновыми кислотами:

В присутствии водорода и кислорода:
R-CH 2 -OH ↔ R-C(=O)-H ↔ R-COOH

Альдегиды легко окисляются, что позволяет использовать более мягкие окислители, чем простой кислород. Ароматические альдегиды подвергаются окислению легче, чем алифатические. Проблема окисления альдегидов - в образовании побочных продуктов.

Кетоны окисляются с трудом, для окисления кетонов необходимо использовать сильные окислители и большое количество тепла. В результате окисления разрывается связь C-C и образовывается кислота (есть исключение):

В присутствии KMnO 4 , H и большого количества тепла :
CH 3 -C(=O)-CH 2 CH 3 → CH 3 -C(=O)-OH + CH 3 CH 2 -C(=O)-OH

Исключением является окисление диоксидом селена, SeO 2 , метил-группа, следующая за карбонильной, окисляется, преобразовываясь в другую карбонильную группу. Например, метилэтилкетон окисляется в диацетил:

Окисление метилэтилкетона в диацетил:
CH 3 CH 2 -C(=O)-CH 3 + SeO 2 → CH 3 -C(=O)-C(=O)-CH 3 + H 2 O + Se

Лёгкость, с которой окисляются альдегиды, позволяет легко отличить их от кетонов, для этого используются мягкие окислители, такие как: реактив Толленса (гидроксид диамминсеребра, Ag(NH 3) 2 OH), реактив Фелинга (алкалиновый раствор ионов меди Cu в Сегнетовой соли KNaC 4 H 6 O 6 ·4H 2 O) и раствор Бенедикта (ионы меди с цитратом и карбонатом натрия). Ароматические альдегиды реагируют с реактивом Толленса, но не реагируют с реактивами Бенедикта и Фелинга, что используется для определения количества алифатических и ароматных альдегидов.

Полимеризация альдегидов

Паральдегид

Ацетальдегид имеет температуру кипения 20°C, что затрудняет его хранение и применение. При обработке ацетальдегида кислотой при низкой температуре, ацетальдегид соединяется в цикличную тройную молекулу - паральдегид, с температурой кипения 120°C. Паральдегид при небольшом нагреве деполимеризуется, высвобождая три молекулы ацетальдегида.

Формальдегид

Для удобства транспортировки и хранения, формальдегид продаётся не в форме газа, а в виде формалина - водного раствора с содержанием 37-40% параформальдегида, OH(CH 2 O) n H, со средним значением n=30. Параформальдегид - белое аморфное вещество, твёрдое, получаемое медленным выпариванием формалина при низком давлении. Полимеризация происходит за счёт присоединения друг к другу молекул формальдегида:

CH 2 =O + H 2 O ↔
+ n → HO-(CH 2 O) n+1 -H

Полимер Дерлин (полиоксиметилен) является хорошим линейным пластиком с высокой молекулярной массой, дерлин обладает отличными характеристиками прочности и эластичности.

Понравилась статья? Поделитесь ей