Контакты

Кто участвует в синтезе белка. Синтез белков в клетке - описание, функции процесса

В синтезе белков из аминокислот можно выделить три этапа.

Первый этап – транскрипция – был описан в предыдущей теме. Он состоит в образовании молекул РНК на матрицах ДНК. Для синтеза белка особое значение имеет синтез матричных или информационных РНК, так как здесь записана информация о будущем белке. Транскрипция протекает в ядре клеток. Затем с помощью специальных ферментов, образовавшаяся матричная РНК перемещается в цитоплазму.

Второй этап называется рекогниция. Аминокислоты избирательно связываются с своими переносчиками транспортными РНК .

Все т-РНК построены сходным образом. Молекула каждой т-РНК представляет собой полинуклеотидную цепь, изогнутую в виде «клеверного листа». Молекулы т-РНК устроены таким образом, что имеют разные концы, имеющие сродство и с м-РНК (антикодон) и с аминокислотами. Т-РНК имеет в клетке 60 разновидностей.

Для соединения аминокислот с транспортными РНК служит особый фермент т-РНК синтетаза или, точнее, амино-ацил – т-РНК синтетаза.

Третий этап биосинтеза белка называется трансляция. Он происходит на рибосомах. Каждая рибосома состоит из двух частей – большой и малой субъединиц. Они состоят из рибосомных РНК и белков.

Трансляция начинается с присоединения матричной РНК к рибосоме. Затем к образовавшемуся комплексу начинают присоединяться т-РНК с аминокислотами. Присоединение это происходит путем связывания антикодона т-РНК к кодону информационной РНК на основании принципа комплементарности. Одновременно к рибосоме могут присоединится не более двух т-РНК. Далее аминокислоты соединяются друг с другом пептидной связью, образуя постепенно полипептид. После этого рибосома передвигает информационную РНК ровно на один кодон. Дальше процесс повторяется снова до тех пор пока информационная РНК не закончится. На конце и-РНК находятся бессмысленные кодоны, которые являются точками в записи и одновременно командой для рибосомы, что она должна отделиться от и-РНК

Таким образом, можно выделить несколько особенности биосинтеза белков.

1. Первичная структура белков формируется строго на основе данных записанных в молекулах ДНК и информационных РНК,

2. Высшие структуры белка (вторичная, третичная, четвертичная) возникают самопроизвольно на основе первичной структуры.

3. В некоторых случаях полипептидная цепь после завершения синтеза подвергается незначительной химической модификации, в результате чего в ней появляются некодируемые аминокислоты, не относящиеся к 20 обычным. Примером такого превращения является белок коллаген, где аминокислоты лизин и пролин превращаются в оксипролин и оксилизин.

4. Синтез белков в организме ускоряется соматотропным гормоном и гормоном тестостероном.

5. Синтез белков очень энергоемкий процесс, требующий огромного количества АТФ.

6. Многие антибиотики подавляют трансляцию.

Метаболизм аминокислот.

Аминокислоты могут использоваться для синтеза различных небелковых соединений. Например, из аминокислот синтезируется глюкоза, азотистые основания, небелковая часть гемоглобина – гем, гормоны – адреналин, тироксин и такие важные соединения, как креатин, карнитин, принимающие участие в энергетическом обмене.

Часть аминокислот подвергается распаду до углекислого газа, воды и аммиака.

Распад начинается с реакций общих для большинства аминокислот.

К ним относятся.

1. Декарбоксилирование - отщепление от аминокислот карбоксильной группы в виде углекислого газа.

ПФ (пиридоксальфосфат) – кофермент производное витамина В6.

Так, например, образуется гистамин из аминокислоты гистидина. Гистамин – важное сосудорасширяющее вещество.

2. Дезаминирование - отцепление аминогруппы в виде NH3 . У человека дезаминирование аминокислот идет окислительным путем.

3. Трансаминирование – реакция между аминокислотами и α-кетокислотами. В ходе этой реакции её участники обмениваются функциональными группами.

Трансаминированию подвергаются все аминокислоты. Этот процесс – главное превращение аминокислот в организме, так как у него скорость значительно выше, чем у двух первых описанных реакций.

Трансаминирование выполняет две основные функции.

1. За счет этих реакций одни аминокислоты превращаются в другие. При этом общее количество аминокислот не меняется но меняется общее соотношение между ними в организме. С пищей в организм поступают чужеродные белки, у которых аминокислоты находятся в иных пропорциях. Путем трансаминирования происходит корректировка аминокислотного состава организма.

2. Трансаминирование является составной частью процесса косвенного дезаминирования аминокислот – процесса, с которого начинается распад большинства аминокислот.

Схема косвенного дезаминирования.

В результате трансаминирования образуются α-кетокислоты и аммиак. Первые разрушаются до углекислого газа и воды. Аммиак для организма высокотоксичен. Поэтому в организме существуют молекулярные механизмы его обезвреживания.

Биосинтез белка.

Пластический обмен (ассимиляция или анаболизм) – совокупность реакций биологического синтеза. Название этого вида обмена отражает его сущность: из веществ, поступающих в клетку из вне, образуются вещества, подобные веществам клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Биосинтез белков осуществляется во всех клетках про -и эукариот. Информация о первичной структуре (порядке аминокислот) белковой молекулы закодирована последовательностью нуклеотидов в соответствующем участке молекулы ДНК - гене.

Ген- это участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка. Следовательно, от порядка нуклеотидов в гене зависит порядок аминокислот в полипептиде, т.е. его первичная структура, от которой в свою очередь зависят все другие структуры, свойства и функции белковой молекулы.

Система записи генетической информации в ДНК (и - РНК) в виде определенной последовательности нуклеотидов называется генетическим кодом. Т.е. единица генетического кода (кодон) - это триплет нуклеотидов в ДНК или РНК, кодирующий одну аминокислоту.

Всего генетический код включает 64 кодона, из них 61 кодирующий и 3 некодирующих (кодоны-терминаторы, свидетельствующие об окончании процесса трансляции).

Кодоны-терминаторы в и - РНК: УАА, УАГ, УГА, в ДНК: АТТ, АТЦ, АЦТ.

Начало процесса трансляции определяет кодон-инициатор (АУГ, в ДНК - ТАЦ), кодирующий аминокислоту метионин. Этот кодон первым входит в рибосому. Впоследствии метионин, если он не предусмотрен в качестве первой аминокислоты данного белка, отщепляется.

Генетический код обладает характерными свойствами.

1. Универсальность - код одинаков для всех организмов. Один и тот же триплет (кодон) в любом организме кодирует одну и ту же аминокислоту.

2. Специфичность - каждый кодон шифрует только одну аминокислоту.

3. Вырожденность - большинство аминокислот могут кодироваться несколькими кодонами. Исключение составляют 2 аминокислоты - метионин и триптофан, имеющие лишь по одному варианту кодона.

4. Между генами имеются «знаки препинания» - три специальных триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза полипептидной цепи.

5. Внутри гена «знаков препинания» нет.

Для того, чтобы синтезировался белок, информация о последовательности нуклеотидов в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа – транскрипцию и трансляцию.

Транскрипция (переписывание) информации происходит путем синтеза на одной из цепей молекулы ДНК одноцепочной молекулы РНК, последовательность нуклеотидов которой точно соответствует последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК.

Она (и - РНК) является посредником, передающим информацию от ДНК к месту сборки молекул белка в рибосоме. Синтез и - РНК (транскрипция) происходит следующим образом. Фермент (РНК - полимераза) расщепляет двойную цепочку ДНК, и на одной из ее цепей (кодирующей) по принципу комплементарности выстраиваются нуклеотиды РНК. Синтезированная таким образом (матричный синтез) молекула и - РНК выходит в цитоплазму, и на один ее конец нанизываются малые субъединицы рибосом.

Второй этап в биосинтезе белка - трансляция - это перевод последовательности нуклеотидов в молекуле и - РНК в последовательность аминокислот в полипептиде. У прокариот, не имеющих оформленного ядра, рибосомы могут связываться с вновь синтезированной молекулой и - РНК сразу же после ее отделения от ДНК или даже до полного завершения ее синтеза. У эукариот и - РНК сначала должна быть доставлена через ядерную оболочку в цитоплазму. Перенос осуществляется специальными белками, которые образуют комплекс с молекулой и - РНК. Кроме функций переноса эти белки защищают и - РНК от повреждающего действия цитоплазматических ферментов.

В цитоплазме на один из концов и - РНК (а именно на тот, с которого начинается синтез молекулы в ядре) вступает рибосома и начинается синтез полипептида. По мере продвижения по молекуле РНК рибосома транслирует триплет за триплетом, последовательно присоединяя аминокислоты к растущему концу полипептидной цепи. Точное соответствие аминокислоты коду триплета и - РНК обеспечивается т - РНК.

Транспортные РНК (т - РНК) «приносят» аминокислоты в большую субъединицу рибосомы. Молекула т - РНК имеет сложную конфигурацию. На некоторых участках ее между комплементарными нуклеотидами образуются водородные связи, и молекула по форме напоминает лист клевера. На ее верхушке расположен триплет свободных нуклеотидов (антикодон), который соответствует определенной аминокислоте, а основание служит местом прикрепления этой аминокислоты (рис. 1).

Рис. 1. Схема строения транспортной РНК: 1 - водородные связи; 2 - антикодон; 3 -место прикрепления аминокислоты.

Каждая т - РНК может переносить только свою аминокислоту. Т-РНК активируется специальными ферментами, присоединяет свою аминокислоту и транспортирует ее в рибосому. Внутри рибосомы в каждый данный момент находится всего два кодона и-РНК. Если антикодон т-РНК является комплементарным кодону и-РНК, то происходит временное присоединение т-РНК с аминокислотой к и-РНК. Ко второму кодону присоединяется вторая т-РНК, несущая свою аминокислоту. Аминокислоты располагаются рядом в большой субъединице рибосомы, и с помощью ферментов между ними устанавливается пептидная связь. Одновременно разрушается связь между первой аминокислотой и ее т-РНК, и т-РНК уходит из рибосомы за следующей аминокислотой. Рибосома перемещается на один триплет, и процесс повторяется. Так постепенно наращивается молекула полипептида, в которой аминокислоты располагаются в строгом соответствии с порядком кодирующих их триплетов (матричный синтез) (рис. 2).

Рис. 2. Схема бисинтеза белка: 1 - и-РНК; 2 - субъединицы рибосомы; 3 - т-РНК с аминокислотами; 4 - т-РНК без аминокислот; 5 - полипептид; 6 - кодон и-РНК; 7- антикодон т-РНК.

Одна рибосома способна синтезировать полную полипептидную цепь. Однако, нередко по одной молекуле и-РНК движется несколько рибосом. Такие комплексы называются полирибосомами. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы и-РНК, сворачивается в спираль и приобретает свойственную ей (вторичную, третичную или четвертичную) структуру. Рибосомы работают очень эффективно: в течение 1с бактериальная рибосома образует полипептидную цепь из 20 аминокислот.

С биохимической точки зрения синтез белка в мышцах – очень сложный процесс. Информацию о структуре всех необходимых организму белков содержит ДНК, находящаяся в ядре клеток. Функции белка зависят от последовательности аминокислот в их структуре. А эта последовательность кодируется последовательностью нуклеотидов ДНК, в которой каждой аминокислоте соответствует группа из трех нуклеотидов – триплет. И каждый участок ДНК – геном – отвечает за синтез одного типа белка.

Белок строится рибосомами в цитоплазме. Необходимая информация о его структуре передается из ядра на рибосомы с помощью и-РНК (информационной РНК) – своеобразной «копии» нужного генома. Синтез и-РНК – это первый этап биосинтеза белков, называемый транскрипцией («переписыванием»).

Второй этап синтеза белков в клетках – трансляция («перевод» нуклеотидного кода ДНК в последовательность аминокислот). На этом этапе и-РНК прикрепляется к рибосоме, затем рибосома начинает от стартового кодона двигаться вдоль цепи и-РНК и присоединять на каждом кодоне (нуклеотидном триплете, кодирущем информацию об одной аминокислоте) и-РНК – аминокислоты, приносимые т-РНК (транспортными РНК). Т-РНК содержат молекулу определенной аминокислоты и антикодон, соответствующий определенному кодону и-РНК. Рибосома присоединяет аминокислоту к растущей белковой цепи, потом отсоединяет т-РНК и передвигается к следующему кодону. Так происходит до тех пор, пока рибосоме не встретится терминатор – стоп-кодон. После этого синтез белковой молекулы прекращается и она отсоединяется от рибосомы. Остается только транспортировать готовую белковую молекулу в растущую мышечную клетку.

Активация синтеза

Главный механизм, запускающий синтез белка в мышцах – это активация всем известного mTOR’а (mammalian target of rapamycin – т.е. «мишень рапамицина у млекопитающих»). «Мишенью» он называется потому, что mTOR отвечает за рост и размножение клеток, и эти процессы блокируются особыми ингибиторами (например, рапамицином), которые воздействуют именно на данный белок.

Для спортсмена важно, что в мышцах постоянно происходит синтез и разрушение белка, обеспечивающие обновление мышечной ткани. И если мы хотим, чтобы наши мышцы подросли, нам надо сделать так, чтобы на протяжении определенного периода синтез белка превосходил его разрушение. Для этого мы и рассматриваем процессы активации синтеза белка, ключевым элементом которых является mTOR.

Биохимически mTOR – это белок-фермент (относящийся к группе протеинкиназ), который стимулирует процесс трансляции, т.е. синтеза белка рибосомами на и-РНК (ее еще называют м-РНК – матричная РНК). В свою очередь, сам mTOR активизируется аминокислотами (лейцин, изолейцин и др.) и факторами роста (различные гормоны – соматотропин, инсулин и др.).

Мышечные нагрузки стимулируют mTOR опосредованно, через систему сигналов о разрушении мышц и усиление секреции факторов роста (например, механического фактора роста).

Белковый баланс

Итак, если наша задача — добиться положительного белкового баланса , т.е. превосходства синтеза белка над его разрушением, то нам следует снижать катаболизм (разрушение мышц) и стимулировать их рост. И у нас есть прекрасная возможность добиться в этом успеха — т.н. «белково-углеводное окно». Всем понятно, что в период вскоре от начала тренировки организм атлета испытывает острую нехватку питательных веществ, которая продолжается примерно полтора-два часа после окончания тренировки, пока организм не восполнит нехватку необходимых веществ из собственных ресурсов. Учитывая, что скорость всасывания и усвоения аминокислот в составе протеинового коктейля составляет час-полтора, то мы получаем пределы белково-углеводного окна, принятие аминокислот и углеводов в котором имеет высокую эффективность усвоения, - от 1,5 ч до тренировки до 1,5 ч после.

По мудрости Природы многие вещества (такие как ) обладают способностью не только стимулировать синтез белка, но и подавлять его разрушение (например, угнетают действие кортизола). Считается, что прием белка (лучше в виде

Синтез белка в клетке

Главным вопросом генетики является вопрос о синтезе белка. Обобщив данные по строению и синтезу ДНК и РНК, Крик в 1960г. предложил матричную теорию синтеза белков, основанную на 3–х положениях:

1. Комплементарность азотистых оснований ДНК и РНК.

2. Линейная последовательность расположения генов в молекуле ДНК.

3. Передача наследственной информации может происходить только с нуклеиновой кислоты на нуклеиновую или на белок.

С белка на белок передача наследственной информации невозможна. Таким образом матрицей для синтеза белка могут быть только нуклеиновые кислоты.

Для синтеза белка необходимы:

1. ДНК (гены) на которых синтезируются молекулы.

2. РНК – (и-РНК) или (м-РНК), р-РНК, т-РНК

В процессе синтеза белка различают этапы: транскрипции и трансляции.

Транскрипция – перепись (переписывание) информации о нуклеиновом строении с ДНК на РНК (т-РНК, и РНК, р-РНК).

Считывание наследственной информации начинается с определенного участка ДНК, который называется промотором. Промотор расположен перед геном и включает около 80 нуклеотидов.

На наружной цепи молекулы ДНК синтезируется и-РНК (промежуточная) служащая матрицей для синтеза белков и поэтому называется матричной. Она является точной копией последовательности нуклеотидов на цепи ДНК.

В ДНК имеются участки, которые не содержат генетической информации (интроны). Участки ДНК содержащие информацию называются экзонами.

В ядре имеются специальные ферменты, вырезающие интроны, а фрагменты экзона «сращиваются» между собой в строгом порядке в общую нить, этот процесс называется «сплайсингом». В процессе сплайсинга образуется зрелая м-РНК, содержащая информацию, необходимую для синтеза белка. Зрелая и-РНК (матричная РНК) проходит через поры ядерной мембраны и поступает в каналы эндоплазматической сети (цитоплазму) и здесь соединяется с рибосомами.

Трансляция – последовательность расположения нуклеотидов в и-РНК, переводится в строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка.

Процесс трансляции включает 2 этапа: активирование аминокислот и непосредственно синтез белковой молекулы.

Одна молекула м-РНК соединяется с 5-6 рибосомами, образуя полисомы. Синтез белка происходит на молекуле м-РНК, причем рибосомы продвигаются вдоль нее. В этот период находящиеся в цитоплазме аминокислоты активируются специальными ферментами, выделяемыми ферментами, выделяемыми митохондриями причем каждая из них своим специфическим ферментом.

Почти моментально аминокислоты связываются с другим видом РНК – низкомолекулярной растворимой, выполняющий функции переносчика аминокислот к молекуле м-РНК и получившей название транспортной (т-РНК). т-РНК переносит аминокислоты к рибосомам на определенное место, где к этому времени оказывается молекула м-РНК. Затем аминокислоты соединяются между собой пептидными связями и образуется белковая молекула. К концу синтеза белка молекула постепенно сходит с м-РНК.

На одной молекуле м-РНК образуется 10-20 молекул белка, а в некоторых случаях и много больше.

Наиболее неясным в синтезе белков вопрос о том, как т-РНК находит соответствующий участок м-РНК, к которому должна быть присоединена приносимая ею аминокислота.

Последовательность расположения азотистых оснований в ДНК, определяющая размещение аминокислот в синтезируемом белке – генетический код.

Поскольку одна и та же наследственная информация «записана» в нуклеиновых кислотах четырьмя знаками (азотистыми основаниями), а в белках – двадцатью (аминокислотами). Проблема генетического кода сводится к установлению соответствия между ними. Большую роль в расшифровке генетического кода сыграли генетики, физики, химики.

Для расшифровки генетического кода прежде всего необходимо было выяснить какое минимальное число нуклеотидов может определять (кодировать) образование одной аминокислоты. Если бы каждая из 20 аминокислот кодировалась одним основанием, то ДНК должна была бы иметь 20 различных оснований, фактически же их только 4. Очевидно, сочетание двух нуклеотидов также недостаточно для кодирования 20 аминокислот. Оно может кодировать лишь 16 аминокислот 4 2 = 16.

Тогда было предложено, что код включает 3 нуклеотида 4 3 = 64 комбинации и следовательно, способно кодировать более чем достаточное число аминокислот для образования любых белков. Такое сочетание трех нуклеотидов называется триплетным кодом.

Код имеет следующие свойства:

1.Генетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами).

2.Вырожденность – одна аминокислота может кодироваться несколькими триплетами, исключение составляет триптофан и метионин.

3.В кодонах для одной аминокислоты первые два нуклеотида одинаковы, а третий изменяется.

4.Неперекрывающийся – триплеты не перекрывают друг друга. Один триплет не может входить в состав другого, каждый из них самостоятельно кодирует свою аминокислоту. Поэтому в полипептидной цепи рядом могут находиться любые две аминокислоты и возможны какие угодно их сочетания, т.е. в последовательности оснований ABCDEFGHI, первые три основания кодируют 1 аминокислоту (ABC-1), (DEF-2) и т.д.

5.Универсален, т.е. у всех организмов для определенных аминокислот кодоны одинаковы (от ромашки до человека). Универсальность кода свидетельствует о единстве жизни на земле.

6.Коленеарность – совпадение расположения кодонов в и-РНК с порядком расположения аминокислот в синтезирующийся полипептидной цепи.

Кодон – триплет нуклеотидов, кодирующий 1 аминокислоту.

7.Бессмысленный – он не кодирует никакой аминокислоты. Синтез белка на этом месте прерывается.

В последние годы выяснилось, что в митохондриях нарушается универсальность генетического кода, четыре кодона в митохондриях изменили свой смысл, например, кодон УГА – отвечает триптофану вместо «СТОП» - прекращение синтеза белка. АУА – соответствует метионину – вместо «изолейцина».

Открытие новых кодонов у митохондрий может служить доказательством того, что код эволюционировал, и что он не сразу стал таким.

Пусть наследственной информации от гена к молекуле белка можно выразить схематически.

ДНК – РНК – белок

Изучение химического состава клеток показал, что различные ткани одного и того же организма содержат различный набор белковых молекул, хотя они имеют и одинаковое количество хромосом, и одинаковую генетическую наследственную информацию.

Отметим такое обстоятельство: несмотря на наличие в каждой клетке всех генов целого организма, в отдельной клетке работают очень немногие гены – от десятых долей до нескольких процентов от общего числа. Остальные же участки «молчат», они заблокированы специальными белками. Это и понятно, зачем, например, генам гемоглобина работать в нервной клетке? То как клетка диктует, каким генам молчать, а каким работать, следует предполагать, что в клетке имеется какой-то совершенный механизм, регулирующий активность генов определяющий, какие гены в данный момент должны быть активными и каким следует находиться в неактивном (репрессивном) состоянии. Такой механизм по данным французских ученых Ф. Жакобо и Ж. Моно получил название индукции и репрессии.

Индукция – возбуждение белкового синтеза.

Репрессия – подавление белкового синтеза.

Индукция обеспечивает работу тех генов, которые синтезируют белок или фермент, и который необходим на данном этапе жизнедеятельности клетки.

У животных важную роль в процессе регуляции генов играют гормоны клеточные мембраны; у растений – условия внешней среды и другие высокоспециализированные индукторы.

Пример: при добавлении гормона щитовидной железы в среду совершается быстрое превращение головастиков в лягушек.

Для нормальной жизнедеятельности бактерии Е (Coli) необходим молочный сахар (лактоза). Если среда, в которой находятся бактерии, лактозы не содержит, эти гены находятся в репрессивном состоянии (т.е. они не функционируют). Внесенная в среду лактоза является индуктором, включающим в работу гены, отвечающих за синтез ферментов. После удаления лактозы из среды синтез этих ферментов прекращается. Таким образом, роль репрессора может выполнять вещество, которое синтезируется в клетке, и если его содержание превышает норму или оно израсходовано.

В синтезе белка или ферментов участвуют различные типы генов.

Все гены находятся в молекуле ДНК.

По своим функциям они не одинаковы:

- структурные – гены, влияющие на синтез какого-то фермента или белка, расположены в молекуле ДНК последовательно друг за другом в порядке их влияния на ход реакции синтеза или еще можно сказать структурные гены – это гены, которые несут информацию о последовательности аминокислот.

- акцепторные – гены не несут наследственной информации о строении белка, они регулируют работу структурных генов.

Перед группой структурных генов расположен общий для них ген – оператор, а перед ним – промотор . В целом эта функциональная группа называется опереном.

Вся группа генов одного оперона включается в процесс синтеза и выключается из него одновременно. Включение и выключение структурных генов составляет сущность всего процесса регуляции.

Функцию включения и выключения выполняет особый участок молекулы ДНК – ген оператор. Ген оператор является начальной точкой синтеза белка или как говорят «считывания» генетической информации. дальше в той же молекуле на некотором расстоянии расположен ген – регулятор, под контролем которого вырабатывается белок называемый репрессором.

Из всего сказанного видно, что синтез белка происходит очень сложно. Генетическая система клетки, используя механизмы репрессии и индукции, может принимать сигналы о необходимости начала и окончания синтеза того или иного фермента и осуществлять этот процесс с заданной скоростью.

Проблема регуляции действия генов у высших организмов имеет большое практическое значение в животноводстве и медицине. Установление факторов, регулирующих синтез белка, раскрыло бы широкие возможности управления онтогенезом, создания высокопродуктивных животных, а также устойчивых животных к наследственным заболеваниям.

Контрольные вопросы:

1.Назовите свойства генов.

2.Что такое ген?

3.Назовите каково биологическое значение ДНК, РНК.

4.Назовите этапы синтеза белка

5.Перечислите свойства генетического кода.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

1.Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» - переписывание).

2.На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.

3.Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.

4.На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами - большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин - 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

Понравилась статья? Поделитесь ей