Контакты

Импульс шаров после столкновения. Савельев И.В

Закон сохранения энергии позволяет рецдать механические задачи в тех случаях, когда почему-либо неизвестны действующие на тело хилы. Интересным примером именно такого случая является столкновение двух тел. Этот пример особенно интересен тем, что при его анализе нельзя обойтись одним только законом сохранения энергии. Нужно привлечь еще и закон сохранения импульса (количества движения).

В обыденной жизни и в технике не так уж часто приходится иметь дело со столкновениями тел, но в физике атома и атомных частиц столкновения - очень частое явление.

Для простоты мы сначала рассмотрим столкновение двух шаров массами из которых второй покоится, а первый движется по направлению ко второму со скоростью Будем считать, что движение происходит вдоль линии, соединяющей центры обоих шаров (рис. 205), так что при столкновении шаров имеет место так называемый центральный, или лобовой, удар. Каковы скорости обоих шаров после столкновения?

До столкновения кинетическая энергия второго шара равна нулю, а первого . Сумма энергий обоих шаров составляет:

После столкновения первый шар станет двигаться с некоторой скоростью Второй шар, скорость которого была равна нулю, также получит какую-то скорость Поэтому после столкновения сумма кинетических энергий двух шаров станет равной

По закону сохранения энергии эта сумма должна быть равна энергии шаров до столкновения:

Из этого одного уравнения мы, конечно, не можем найти две неизвестные скорости: Вот тут-то на помощь и приходит второй закон сохранения - закон сохранения импульса. До столкновения шаров импульс первого шара был равен а импульс второго - нулю. Полный импульс двух шаров был равен:

После столкновения импульсы обоих шаров изменились и стали равными а полный импульс стал

По закону сохранения импульса полный импульс при столкновении измениться не может. Поэтому мы должны написать:

Так как движение происходит вдоль прямой, то вместо векторного уравнения можно написать алгебраическое (для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара):

Теперь мы имеем два уравнения:

Такую систему уравнений можно решить и найтн неизвестные скорости их и шаров после столкновения. Для этого перепишем ее следующим образом:

Разделив первое уравнение на второе, получим:

Решая теперь это уравнение совместно со вторым уравнением

(проделайте это самостоятельно), найдем, что первый шар после удара будет двигаться со скоростью

а второй - со скоростью

Если оба шара имеют одинаковые массы то Это значит, что первый шар, столкнувшись со вторым, передал ему свою скорость, а сам остановился (рис. 206).

Таким образом, пользуясь законами сохранения энергии и импульса, можно, зная скорости тел до столкновения, определить их скорости после столкновения.

А как обстояло дело во время самого столкновения в тот момент, когда центры шаров максимально сблизились?

Очевидно, что в это время они двигались вместе с некоторой скоростью . При одинаковых массах тел их общая масса равна 2т. По закону сохранения импульса во время совместного движения обоих шаров их импульс должен быть равен общему импульсу до столкновения:

Отсюда следует, что

Таким образом, скорость обоих шаров при их совместном движении равна половине

скорости одного из них до столкновения. Найдем кинетическую энергию обоих шаров для этого момента:

А до столкновения общая энергия обоих шаров была равна

Следовательно, в самый момент столкновения шаров кинетическая энергия уменьшилась вдвое. Куда же пропала половина кинетической энергии? Не происходит ли здесь нарушения закона сохранения энергии?

Энергия, конечно, и во время совместного движения шаров осталась прежней. Дело в том, что во время столкновения оба шара были деформированы и поэтому обладали потенциальной энергией упругого взаимодействия. Именно на величину этой потенциальной энергии и уменьшилась кинетическая энергия шаров.

Задача 1. Шар, имеющий массу равную 50 г, движется со скоростью и сталкивается с неподвижным шаром, масса которого Каковы скорости обоих шаров после столкновения? Столкновение шаров считать центральным.

При соударении тел друг с другом они претерпевают деформации

При соударении тел друг с другом они претерпевают деформации. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и в так называемую внутреннюю энергию тел. Увеличение внутренней энергии тел сопровождается повышением их температуры.

Существуют два предельных вида удара: абсолютно упругий и абсолютно неупругий. Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические, виды энергии. При таком ударе кинетическая энергия переходит полностью или частично в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоростями, величина и направление которых определяются двумя условиями-сохранением полной энергии и сохранением полного импульса системы тел.

Абсолютно неупругий удар характеризуется тем, что потенциальной энергии деформации не возникает; кинетическая энергия тел полностью или частично превращается во внутреннюю энергию; после удара столкнувшиеся тела либо движутся с одинаковой скоростью, либо покоятся. При абсолютно неупругом ударе выполняется лишь закон сохранения импульса, закон же сохранения Механической энергии не соблюдается - имеет место закон сохранения суммарной энергии различных видов - механической и внутренней.

Мы ограничимся рассмотрением центрального удара двух шаров. Удар называется центральным, если шары до удара движутся вдоль прямой, проходящей через их центры. При центральном ударе соударение может произойти, если; 1) шары движутся навстречу друг другу (рис 70, а) и 2) одни из шаров догоняет другой (рис, 70,6).

Будем предполагать, что шары образуют замкнутую систему или что внешние силы, приложенные к шарам, уравновешивают друг друга.

Рассмотрим вначале абсолютно неупругий удар. Пусть массы шаров равны m 1 и m 2 , а скорости до удара V 10 и V 20. В силу закона сохранения суммарный импульс шаров после удара должен быть таким же, как и до удара:

Поскольку векторы v 10 и v 20 направлены вдоль одной и той же прямой, вектор v также имеет направление, совпадающее с этой прямой. В случае б) (см. рис. 70) он направлен в ту же сторону, что и векторы v 10 и v 20 . В случае а) вектор v направлен в сторону того из векторов v i0 , для которого произведение m i v i0 больше.

Модуль вектора v может быть вычислен по следующей формуле:

где υ 10 и υ 20 -модули векторов v 10 и v 20 ; знак «-» соответствует случаю а), знак «+» - случаю б).

Теперь рассмотрим абсолютно упругий удар. При таком ударе выполняются два закона сохранения: закон сохранения импульса и закон сохранения механической энергии.

Обозначим массы шаров m 1 и m 2 , скорости шаров до удара v 10 и v 20 и, наконец, скорости шаров после удара v 1 и v 2. Напишем уравнения сохранения импульса и энергии;

Учитывая, что , приведем (30.5) к виду

Умножая (30.8) на m 2 и вычитая результат из (30.6), а затем умножая (30.8) на m 1 и складывая результат с (30.6), получим векторы скоростей шаров после удара:

Для численных подсчетов спроектируем (30.9) на направление вектора v 10 ;

В этих формулах υ 10 и υ 20 -модули, а υ 1 и υ 2 - проекции соответствующих векторов. Верхний знак «-» соответствует случаю шаров, движущихся навстречу друг другу, нижний знак «+» - случаю, когда первый шар нагоняет второй.

Отметим, что скорости шаров после абсолютно упругого удара не могут быть одинаковыми. В самом деле, приравняв друг другу выражения (30.9) для v 1 и v 2 и произведя преобразования, получим:

Следовательно, для того чтобы скорости шаров после удара оказались одинаковыми, необходимо, чтобы они были одинаковыми и до удара, но в этом случае соударение не может произойти. Отсюда следует, что условие равенства скоростей шаров после удара несовместимо с законом сохранения энергии. Итак, при неупругом ударе механическая энергия не сохраняется - она частично переходит во внутреннюю энергию соударяющихся тел» что приводит к их нагреву.

Рассмотрим случай, когда массы соударяющихся шаров равны: m 1 =m 2 . Из (30.9) следует, что при этом условии

т. е. шары при соударении обмениваются скорости. В частности, если один из шаров одинаковой массы, например второй, до соударения покоится, то после удара он движется с такой же скоростью, какую использовал первоначально первый шар; первый же шар после удара оказывается неподвижным.

С помощью формул (30.9) можно определить скорость шара после упругого удара о неподвижную не движущуюся стенку (которую можно рассматривать как шар бесконечно большой массы m 2 и бесконечно большого радиуса). Деля числитель и знаменатель выражений (30,9) на m 2 и пренебрегая членами, содержащие множитель m 1 /m 2 получаем:

Как следует из полученного результата, скоро стенки остается неизменной. Скорость же шара, если стенка неподвижна (v 20 =0), меняет направление противоположное; в случае движущейся стенки изменяется также величина скорости шара (возрастает до 2υ 20 , если стенка движется навстречу шару, и убывает 2υ 20 , если стенка «уходит» от догоняющего ее шара)

На этом уроке мы продолжаем изучать законы сохранения и рассмотрим различные возможные удары тел. Из своего опыта вы знаете, что накачанный баскетбольный мяч хорошо отскакивает от пола, тогда как сдутый - практически не отскакивает. Из этого вы могли сделать вывод, что удары различных тел могут быть разными. Для того чтобы охарактеризовать удары, вводятся абстрактные понятия абсолютно упругого и абсолютно неупругого ударов. На этом уроке мы займемся изучением различных ударов.

Тема: Законы сохранения в механике

Урок: Столкновение тел. Абсолютно упругий и абсолютно неупругий удары

Для изучения строения вещества, так или иначе, используются различные столкновения. Например, для того, чтобы рассмотреть какой-то предмет, его облучают светом, или потоком электронов, и по рассеянию этого света, или потока электронов получают фотографию, или рентгеновский снимок, или изображение данного предмета в каком-либо физическом приборе. Таким образом, столкновение частиц - это то, что окружает нас и в быту, и в науке, и в технике, и в природе.

Например, при одном столкновении ядер свинца в детекторе ALICE Большого Адронного Коллайдера рождаются десятки тысяч частиц, по движению и распределению которых можно узнать о самых глубинных свойствах вещества. Рассмотрение процессов столкновения с помощью законов сохранения, о которых мы говорим, позволяет получать результаты, независимо от того, что происходит в момент столкновения. Мы не знаем, что происходит в момент столкновения двух ядер свинца, но мы знаем, какова будет энергия и импульс частиц, которые разлетаются после этих столкновений.

Сегодня мы рассмотрим взаимодействие тел в процессе столкновения, иными словами движение невзаимодействующих тел, которые меняют свое состояние только при соприкосновении, которое мы называем столкновением, или ударом.

При столкновении тел, в общем случае, кинетическая энергия сталкивающихся тел не обязана быть равной кинетической энергии разлетающихся тел. Действительно, при столкновении тела взаимодействуют друг с другом, воздействуя друг на друга и совершая работу. Эта работа и может привести к изменению кинетической энергии каждого из тел. Кроме того, работа, которую совершает первое тело над вторым, может оказаться неравной работе, которую второе тело совершает над первым. Это может привести к тому, что механическая энергия может перейти в тепло, электромагнитное излучение, или даже породить новые частицы.

Столкновения, при которых не сохраняется кинетическая энергия сталкивающихся тел, называют неупругими.

Среди всех возможных неупругих столкновений, есть один исключительный случай, когда сталкивающиеся тела в результате столкновения слипаются и дальше движутся как одно целое. Такой неупругий удар называют абсолютно неупругим (рис. 1) .

а)б)

Рис. 1. Абсолютное неупругое столкновение

Рассмотрим пример абсолютно неупругого удара. Пусть пуля массой летела в горизонтальном направлении со скоростью и столкнулась с неподвижным ящиком с песком массой , подвешенным на нити. Пуля застряла в песке, и дальше ящик с пулей пришел в движение. В процессе удара пули и ящика внешние силы, действующие на эту систему, - это сила тяжести, направленная вертикально вниз, и сила натяжения нити, направленная вертикально вверх, если время удара пули было настолько мало, что нить не успела отклониться. Таким образом, можно считать, что импульс сил, действующих на тело во время удара, был равен нулю, что означает, что справедлив закон сохранения импульса:

.

Условие, что пуля застряла в ящике, и есть признак абсолютно неупругого удара. Проверим, что произошло с кинетической энергией в результате этого удара. Начальная кинетическая энергия пули:

конечная кинетическая энергия пули и ящика:

простая алгебра показывает нам, что в процессе удара кинетическая энергия изменилась:

Итак, начальная кинетическая энергия пули меньше конечной на некоторую положительную величину. Как же это произошло? В процессе удара между песком и пулей действовали силы сопротивления. Разность кинетических энергий пули до и после столкновения как раз и равны работе сил сопротивления. Другими словами, кинетическая энергия пули пошла на нагрев пули и песка.

Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Примером абсолютно упругих ударов могут быть столкновения бильярдных шаров. Мы рассмотрим простейший случай такого столкновения - центральное столкновение.

Центральным называется столкновение, при котором скорость одного шара проходит через центр масс другого шара. (Рис. 2.)

Рис. 2. Центральный удар шаров

Пускай один шар покоится, а второй налетает на него с какой-то скоростью , которая, согласно нашему определению, проходит через центр второго шара. Если столкновение центральное и упругое, то при столкновении возникают силы упругости, действующие вдоль линии столкновения. Это приводит к изменению горизонтальной составляющей импульса первого шара, и к возникновению горизонтальной составляющей импульса второго шара. После удара второй шар получит импульс, направленный направо, а первый шар может двигаться как направо, так и налево - это будет зависеть от соотношения между массами шаров. В общем случае, рассмотрим ситуацию, когда массы шаров различны.

Закон сохранения импульса выполняется при любом столкновении шаров:

В случае абсолютно упругого удара, также выполняется закон сохранения энергии:

Получаем систему из двух уравнений с двумя неизвестными величинами. Решив ее, мы получим ответ.

Скорость первого шара после удара равна

,

заметим, что эта скорость может быть как положительной, так и отрицательной, в зависимости от того, масса какого из шаров больше. Кроме того, можно выделить случай, когда шары одинаковые. В этом случае после удара первый шар остановится. Скорость второго шара, как мы ранее отметили, получилась положительной при любом соотношении масс шаров:

Наконец, рассмотрим случай нецентрального удара в упрощенном виде - когда массы шаров равны. Тогда, из закона сохранения импульса мы можем записать:

А из того, что кинетическая энергия сохраняется:

Нецентральным будет удар, при котором скорость налетающего шара не будет проходить через центр неподвижного шара (рис. 3). Из закона сохранения импульса, видно, что скорости шаров составят параллелограмм. А из того, что сохраняется кинетическая энергия, видно, что это будет не параллелограмм, а квадрат.

Рис. 3. Нецентральный удар при одинаковых массах

Таким образом, при абсолютно упругом нецентральном ударе, когда массы шаров равны, они всегда разлетаются под прямым углом друг к другу.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике - М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Ответ: Да, действительно такие удары существуют в природе. Например, если мяч попадает в сетку футбольных ворот, или кусок пластилина выскальзывает из ваших рук и прилипает к полу, или стрела, которая застряла в подвешенной на нитках мишени, или попадание снаряда в баллистический маятник.

Вопрос: Приведите больше примеров абсолютно упругого удара. Существуют ли они в природе?

Ответ: В природе не существует абсолютно упругих ударов, поскольку при любом ударе часть кинетической энергии тел тратится на совершение некими сторонними силами работы. Однако иногда мы можем считать некие удары абсолютно упругими. Мы вправе делать это, когда изменение кинетической энергии тела при ударе незначительное по сравнению с этой энергией. Примерами таких ударов может служить баскетбольный мяч, который отскакивает от асфальта, или столкновения металлических шариков. Упругими также принято считать соударения молекул идеального газа.

Вопрос: Что делать, когда удар частично упругий?

Ответ: Нужно оценить, какое количество энергии ушло на работу диссипативных сил, то есть таких сил, как сила трения или сила сопротивления. Далее нужно воспользоваться законами сохранения импульса и узнать кинетическую энергию тел после столкновения.

Вопрос: Как стоит решать задачу о нецентральном ударе шаров, имеющих разные массы?

Ответ: Стоит записать закон сохранения импульса в векторной форме, и то, что кинетическая энергия сохраняется. Далее, у вас получится система из двух уравнений и двух неизвестных, решив которую, вы сможете найти скорости шаров после столкновения. Однако, следует отметить, что это достаточно сложный и трудоемкий процесс, выходящий за рамки школьной программы.

Каталог заданий.
Закон сохранения импульса, второй закон Ньютона в импульсной форме

Сортировка Основная Сначала простые Сначала сложные По популярности Сначала новые Сначала старые
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word

Кубик массой m движется по гладкому столу со скоростью и налетает на покоящийся кубик такой же массы. После удара кубики движутся как единое целое без вращений, при этом:

1) скорость кубиков равна

2) импульс кубиков равен

3) импульс кубиков равен

Решение.

На систему не действует никаких внешних сил, следовательно, выполняется закон сохранения импульса. До столкновения один кубик скользил со скоростью а второй — покоился, значит, полный импульс системы по модулю был равен

Таким он останется и после столкновения. Следовательно, утверждение 2 верно. Покажем, что утверждения 1 и 4 ложны. Используя закон сохранения импульса, найдем скорость совместного движения кубиков после столкновения: Следовательно, скорость кубиков а не Далее, находим их кинетическую энергию: Ответ: 2.

Ответ: 2

и почему после равно не 2mU?

Алексей (Санкт-Петербург)

Добрый день!

Исправил, спасибо.

В выделенной строчке не записывается закон сохранения импульса, там просто подсчитывается импульс до столкновения.

Гость 17.05.2012 18:47

4) кинетическая энергия кубиков равна

мне кажеться что это некорректный ответ

По закону сохранения энергии E1=E2, где E1- энергия в самом начале, E2-

энергия в конце. E2=E"+E", где E"- энергия 1ого кубика, E" - энергия 2ого кубика.Нам требуется найти кин. энергию кубиков. Значит нужно найти сумму кин. энергий каждого кубика, т.е. E"+E". А E"+E"= m(v^2)/2 по закону сохранения энергии. значит и 2 и 4 ответ будут являться правильными.

Поэтому следует изменить ответ следующим образом: 4)кинетическая энергия каждого кубика равна

Алексей (Санкт-Петербург)

Добрый день!

Так как столкновение абсолютно неупругое, кинетическая энергия не сохраняется. Часть кинетической энергии первого кубика переходит в кинетическую энергию совместного движения кубиков, остальная энергия переходит в их внутреннюю энергию (кубики нагреваются).

Александр Сербин (Москва) 13.10.2012 20:26

Некорректная задача, непонятно что именно спрашивают. Импульс до взаимодействия или после?

Алексей (Санкт-Петербург)

Добрый день!

Импульс сохраняется для данной системы.

Гость 15.11.2012 15:26

Добрый день!

Почему после удара, импульс равен mv, а не 2mv, ведь после столкновения они движутся как единое целое(значит их масса равна 2m)?

Алексей (Санкт-Петербург)

Добрый день!

Все верно, масса равна , но скорость то теперь не . Правильный ответ получается после использования закона сохранения импульса.

Гость 19.12.2012 16:30

А чему будет равна их скорость после удара?

Алексей (Санкт-Петербург)

Добрый день!

Из закона сохранения импульса скорость после удара равна

Маятник массой m проходит точку равновесия со скоростью Через половину периода колебаний он проходит точку равновесия, двигаясь в противоположном направлении с такой же по модулю скоростью Чему равен модуль изменения импульса маятника за это время?

Решение.

Через половину периода проекция скорости маятника меняется на противоположную и становится равной Следовательно, модуль изменения импульса маятника за это время равен

Ответ: 3.

Ответ: 3

Я не понял, почему оба импульса имеют знак минус, если в условии сказано, что маятник поменял направление. Знаки же должны быть разные... да и потом если скорости по модулю массы одинаковы в обоих случаях, то изменение должно быть равно 0

Алексей (Санкт-Петербург)

Добрый день!

Минус в скобочка означает противоположный знак проекции, а второй минус - вычитает из конечного импульса начальный.

Модуль импульса не изменился, поэтому изменение модуля импульса равно нулю. А вот направление импульса поменялось на противоположное, поэтому модуль изменения импульса уже отличен от нуля.

Гость 24.01.2013 18:50

в условии написано что скорость 2го равна скорости 1го по модулю. То есть скорость 1го v, а скорость 2го [-v] (минус в по модулю).

имеем -mv]==0

если не так, прошу объяснить почему.

Алексей (Санкт-Петербург)

Добрый день!

Не так, именно поэтому в решении написано иначе))

Слова "с такой же по модулю скоростью " означают, что скорость тела не изменяется по величине. Нас спрашивают в задаче не про изменение модуля, а про модуль изменения. Это разные вещи. Направлении тела изменяется на противоположное, поэтому модуль изменения импульса не равен нулю.

Гость 25.01.2013 09:58

Мне кажется, что в задании серьёзный недочёт.

Чему равна скорость поезда? 10 км/ч. Скорость поезда это модуль вектора скорости, модуль вектора не может быть отрицательным, т.к. это его длина; отрицательной может быть только его проекция на координатную прямую.

В этой задаче надо найти модуль изменения импульса маятника, т.е. изменение импульса маятника взятое без знака. Импульс это вектор, и по аналогии со скоростью и другими векторными величинами (ускорение, сила) само слово "импульс" означает модуль вектора. Т. к. здесь ничего не говорится про проекцию, получается что нас просят найти "изменение модуля вектора импульса", или "длину вектора импульса", а эта величина равна нулю (вектор поменял направление, но длина осталась прежней; изменилась только проекция на ось x).

Именно по этой причине я выбрал четвёртый ответ, при том что прекрасно знаю физику.

Алексей (Санкт-Петербург)

Добрый день!

Слово "импульс" - обозначает физическую величину "импульс", который, как Вы верно заметили, является вектором. Ваш пример с поездом - это пример жаргона. Когда задается такой вопрос, все понимают, что подразумевается модуль вектора, то есть величина скорости. Точно также, можно на вопрос: "Сколько весит это тело?". Дать ответ: "1 кг", понимая, что нас спрашивают скорее всего все-таки про массу, а не про силу.

Так что никаких проблем с формулировкой нет. Есть импульс, он изменяется. Изменение вектора так же является вектором. Соответственно, модуль изменения импульса есть длина вектора равного разности конечного и начального векторов.

Маятник массой m проходит точку равновесия со скоростью Через четверть периода колебаний он достигает точки максимального удаления от точки равновесия. Чему равен модуль изменения импульса маятника за это время?

Решение.

Через четверть периода, когда маятник достигает точки максимального удаления, его скорость обращается в ноль. Следовательно, модуль изменения импульса маятника за это время равен

Ответ: 2.

Ответ: 2

Две тележки движутся навстречу друг другу с одинаковыми по модулю скоростями Массы тележек m и 2m . Какой будет скорость движения тележек после их абсолютно неупругого столкновения?

Решение.

Для тележек выполняется закон сохранения импульса, поскольку на систему не действует никаких внешних сил в горизонтально направлении:

Отсюда находим скорость тележек после абсолютно неупругого удара: Ответ: 4.

Ответ: 4

Алексей (Санкт-Петербург)

Добрый день!

Вы не совсем верно переписали строчку из решения. Так что поясню еще раз то, что написано в решении.

Эта формула — закон сохранения импульса, спроектированный на горизонтальную ось направленную вдоль вектора более тяжелой тележки.

Пусть вектор скорости тяжело тележки равен , тогда скорость легкой тележки равна, по условию, . Полный импульс системы до столкновения: . Обозначим вектор скорости после столкновения через , тогда импульс двух тележек после удара .

Понравилась статья? Поделитесь ей