Контакты

Электрические свойства вещества. По электропроводящим свойствам все вещества можно разделить на проводники

Проводимости

Теория сверхпроводимости

При формировании кристаллических решеток твердых тел из атомов различных веществ валентные электроны, расположенные на внешних орбитах атомов, различным образом взаимодействуют друг с другом и как следствие ведут себя по-разному (см. полосная

теория твердотельной сверхпроводимости и теория

молекулярных орбиталей). Таким образом, свобода валентных электронов перемещаться внутри вещества обусловливается его молекулярно-кристаллической структурой. В целом же по электропроводящим свойствам все вещества можно (с некоторой долей условности) подразделить на три категории, каждая из которых обладает ярко выраженными характеристиками поведения валентных электронов под воздействием внешнего электрического поля.

Проводники

В некоторых веществах валентные электроны свободно перемещаются между атомами. Прежде всего к этой категории относятся металлы, в которых электроны внешних оболочек буквально находятся в «общей собственности» атомов кристаллической решетки (см.

химические связи и электронная теория проводимости).

Если подать на такое вещество электрическое напряжение (например, подключить к двум его концам полюса аккумуляторной батареи), электроны начнут беспрепятственное упорядоченное движение в направлении южного полюса разности потенциалов, создавая тем самым электрический ток. Токопроводящие вещества подобного рода принято называть проводниками. Самые распространенные в технике проводники - это, конечно же, металлы, прежде всего медь и алюминий, обладающие минимальным электрическим сопротивлением и достаточно широко распространенные в земной природе. Именно из них в основном изготавливаются и высоковольтные электрические кабели, и бытовая электропроводка. Имеются и другие виды материалов, обладающих хорошей электропроводностью, - это, в частности, солевые, щелочные и кислотные растворы, а также плазма и некоторые виды длинных органических молекул.



В этой связи важно помнить, что электропроводность может быть обусловлена наличием в веществе не только свободных электронов, но и свободных положительно и отрицательно заряженных ионов химических соединений. В частности, даже в обычной водопроводной воде растворено столько всевозможных солей, разлагающихся при растворении на отрицательно заряженные катионы и положительно заряженные анионы, что вода (даже пресная) является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности - иначе можно получить весьма ощутимый удар током.

Изоляторы

Во многих других веществах (в частности, в стекле, фарфоре, пластмассах) электроны прочно привязаны к атомам или молекулам и

не способны к свободному перемещению под воздействием приложенного извне электрического напряжения. Такие материалы называются изоляторами.

Чаще всего в современной технике в качестве электроизоляторов используются различные пластмассы. По сути, любой пластик состоит из полимерных молекул - то есть очень длинных цепочек органических (водородно-углеродных) соединений, - которые к тому же образуют сложные и весьма прочные взаимные переплетения. Проще всего структуру полимера представить себе в виде тарелки перепутавшейся и слипшейся длинной и тонкой лапши. В таких материалах электроны прочно привязаны к своим сверхдлинным молекулам и не способны покинуть их под воздействием внешнего напряжения. Хорошими изоляционными свойствами обладают и аморфные вещества, такие как стекло, фарфор или резина, не имеющие жесткой кристаллической структуры. Они также нередко используются в качестве электроизоляторов.

И проводники, и изоляторы играют важную роль в нашей техногенной цивилизации, использующей электричество в качестве основного средства передачи энергии на расстояние. По проводникам электроэнергия поступает от электростанций в наши дома и на всевозможные производственные предприятия, а изоляторы обеспечивают нашу безопасность, ограждая от губительных последствий прямого контакта человеческого организма с высоким электрическим напряжением.

Полупроводники

Наконец, имеется малочисленная категория химических элементов, занимающих промежуточное положение между металлами и изоляторами (самые известные из них - кремний и германий). В кристаллических решетках этих веществ все валентные электроны, на первый взгляд, связаны химическими связями и свободных электронов для обеспечения электрической проводимости, казалось бы, оставаться не должно. Однако на деле ситуация выглядит несколько иначе, поскольку часть электронов оказывается выбитой со своих внешних орбит в результате теплового движения по причине недостаточной энергии их связи с атомами. В результате при температуре выше абсолютного нуля они все-таки обладают определенной электропроводностью под воздействием внешнего напряжения. Коэффициент проводимости у них достаточно низкий (тот же кремний проводит электрический ток в миллионы раз хуже меди), но какой-то ток, пусть и незначительный, они все-таки проводят. Такие вещества называют полупроводниками.

Как выяснилось в результате исследований, электрическая проводимость в полупроводниках, однако, обусловлена не только движением свободных электронов (так называемой п-проводимостью за счет направленного движения отрицательно заряженных частиц). Имеется и второй механизм электропроводности - при этом весьма необычный. При высвобождении электрона из кристаллической решетки полупроводника за счет теплового движения на его месте образуется так называемая дырка - положительно заряженная ячейка кристаллической структуры, которая может в любой момент оказаться занятой отрицательно заряженным электроном, перескочившим в нее с внешней орбиты соседнего атома, где, в свою очередь, образуется новая положительно заряженная дырка. Такой процесс может продолжаться сколь угодно долго, и выглядеть со стороны (в макроскопическом масштабе) все будет так, что электрический ток под внешним напряжением обусловлен не движением электронов (которые всего лишь перескакивают с внешней орбиты одного атома на внешнюю орбиту соседнего атома), а направленной миграцией положительно заряженной дырки (дефицита электрона) в направлении отрицательного полюса приложенной разности потенциалов. В итоге в полупроводниках наблюдается и второй тип проводимости (так называемая дырочная, или р-проводимость), обусловленная, конечно же, также движением отрицательно заряженных электронов, но с точки зрения макроскопических свойств вещества представляющаяся направленным током положительно заряженных дырок к отрицательному полюсу.

Явление дырочной проводимости проще всего проиллюстрировать на примере дорожной пробки. По мере продвижения вперед машины, застрявшей в ней, на ее месте образуется свободное пространство, которое тут же занимает следующая машина, место которой сразу же занимает третья машина и т.д. Этот процесс можно представить себе двояко: можно описывать редкое продвижение отдельных машин из числа стоящих в длинной пробке; проще, однако, характеризовать ситуацию с точки зрения эпизодического продвижения в противоположном направлении немногочисленных пустот между застрявшими в пробке машинами. Именно руководствуясь подобной аналогией, физики и говорят о дырочной проводимости, условно принимая за данность, что электрический ток проводится не благодаря движению многочисленных, но редко трогающихся с места отрицательно заряженных электронов, а благодаря движению в противоположном направлении положительно заряженных пустот на внешних орбитах атомов полупроводников, которые они условились называть дырками. Таким образом, дуализм электронно-дырочной проводимости носит чисто условный характер, поскольку с физической точки зрения ток в полупроводниках в любом случае обусловлен исключительно направленным движением электронов.

Полупроводники нашли широкое практическое применение в современной радиоэлектронике и компьютерных технологиях именно благодаря тому, что их проводящие свойства легко и точно контролируются посредством изменения внешних условий.

электронная теория проводимости

Электропроводность твердых тел обусловлена коллективным направленным движением свободных электронов

ЧАСТЬ 1

1. Металлы (М) располагаются в I-III группах, или в нижней части IV-VI групп. Только из металлов состоят В группы.

2. У атомов металлов 1—3 электрона во внешнем электронном слое и сравнительно большой радиус атома. Атомы металлов имеют тенденцию к отдаче внешних электронов.

3. Простые вещества — металлы состоят из элементов, связанных металлической химической связью, которую можно отобразить общей схемой:

4. Все М — твёрдые вещества , кроме Hg . Самые мягкие металлы IA группы, самый твердый —Cr.

5. М обладают тепло- и электропроводностью и имеют металлический блеск.

6. Олово обладает свойством образовывать два простых вещества - белое и серое, т. е. свойством аллотропии.

7. Дополните таблицу "Свойства и применение некоторых металлов".

ЧАСТЬ 2

1. Выберите названия простых веществ — металлов. Из букв, соответствующих правильным ответам, вы составите название металла, которое в переводе с греческого означает «камень»: литий.

2) магний Л

3) кальций И

5) медь Т

7) золото И

8) ртуть Й

2. Неверны следующие утверждения, характеризующие металлы:


5) непластичные и нековкие

3. Выберите четыре самых электропроводных металла (цифры расположите в порядке убывания электропроводности) из перечня:


1) серебро 

2) золото

3) алюминий

4) железо

5) марганец 

6) калий 

7) натрий

Ответ: 1, 2, 3, 7.

4. Составьте схемы образования металлической химической связи для веществ с формулами:

5. Проанализируйте рисунок «Металлическая кристаллическая решётка».

Сделайте вывод о причинах пластичности, тепло- и электропроводности металлов.
Каждый атом металла окружен восемью соседними атомами. Оторвавшиеся внешние электроны свободно движутся от одного образовавшегося иона к другому, соединяя ионный остов металла в гигантскую молекулу. Высокая теплопроводность, электрическая проводимость металлов обусловлены наличием в их кристаллических решетках подвижных электронов, перемещающихся под действием электрического поля. Большинство металлов пластичны из-за смещения слоев атомов металлов без разрыва связи между ними.

6. Заполните таблицу «Металлы». Данные для таблицы найдите с помощью дополнительных источников информации, в том числе Интернета.

7. С помощью Интернета и других источников информации подготовьте небольшое сообщение на тему «Ртуть в жизни человека» по следующему плану:


1) знания о ртути в древности и в Средние века;

2) токсичность ртути и меры безопасности при работе с ней;

3) применение ртути в современной промышленности.

1) Ртуть входила в число 7 металлов, её считают прародительницей всех металлов, использовали не только саму ртуть, но и её сплав киноварь. 

2) Она очень токсична, испаряется при комнатной температуре, и при вдыхании отравляет человека. Накапливаясь в организме, она поражает внутренние органы, дыхательные пути, кроветворные органы и головной мозг.

3) Ртуть используют очень широко. В химической промышленности в качестве катода при получении гидроксида натрия, как катализатор при получении многих органических соединений, при растворении урановых блоков (в атомной энергетике). Этот элемент применяется при изготовлении ламп дневного света, кварцевых ламп, манометров, термометров и других научных приборов.

При формировании кристаллических решеток твердых тел из атомов различных веществ валентные электроны, расположенные на внешних орбитах атомов, различным образом взаимодействуют друг с другом и, как следствие, ведут себя по-разному (см. Зонная теория проводимости твердых тел и Теория молекулярных орбиталей). Таким образом, свобода валентных электронов перемещаться внутри вещества обусловливается его молекулярно-кристаллической структурой. В целом же, по электропроводящим свойствам все вещества можно (с некоторой долей условности) подразделить на три категории, каждая из которых обладает ярко выраженными характеристиками поведения валентных электронов под воздействием внешнего электрического поля.

Проводники

В некоторых веществах валентные электроны свободно перемещаются между атомами. Прежде всего, к этой категории относятся металлы, в которых электроны внешних оболочек буквально находятся в «общей собственности» атомов кристаллической решетки (см. Химические связи и Электронная теория проводимости). Если подать на такое вещество электрическое напряжение (например, подключить к двум его концам полюса аккумуляторной батареи), электроны начнут беспрепятственное упорядоченное движение в направлении южного полюса разности потенциалов , создавая, тем самым, электрический ток. Токопроводящие вещества подобного рода принято называть проводниками. Самые распространенные в технике проводники — это, конечно же, металлы, прежде всего медь и алюминий, обладающие минимальным электрическим сопротивлением и достаточно широко распространенные в земной природе. Именно из них, в основном, изготавливаются и высоковольтные электрические кабели, и бытовая электропроводка. Имеются и другие виды материалов, обладающих хорошей электропроводностью, — это, в частности, солевые, щелочные и кислотные растворы, а также плазма и некоторые виды длинных органических молекул.

В этой связи важно помнить, что электропроводность может быть обусловлена наличием в веществе не только свободных электронов, но и свободных положительно и отрицательно заряженных ионов химических соединений. В частности, даже в обычной водопроводной воде растворено столько всевозможных солей, разлагающихся при растворении на отрицательно заряженные катионы и положительно заряженные анионы , что вода (даже пресная) является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности — иначе можно получить весьма ощутимый удар током.

Изоляторы

Во многих других веществах (в частности, в стекле, фарфоре, пластмассах) электроны прочно привязаны к атомам или молекулам и не способны к свободному перемещению под воздействием приложенного извне электрического напряжения. Такие материалы называются изоляторами.

Чаще всего в современной технике в качестве электроизоляторов используются различные пластмассы. По сути, любой пластик состоит из полимерных молекул — то есть очень длинных цепочек органических (водородно-углеродных) соединений, — которые, к тому же, образуют сложные и весьма прочные взаимные переплетения. Проще всего структуры полимера представить себе в виде тарелки перепутавшейся и слипшейся длинной и тонкой лапши. В таких материалах электроны прочно привязаны к своим сверхдлинным молекулам и не способны покинуть их под воздействием внешнего напряжения. Хорошими изоляционными свойствами обладают и аморфные вещества, такие как стекло, фарфор или резина, не имеющие жесткой кристаллической структуры. Они также нередко используются в качестве электроизоляторов.

И проводники, и изоляторы играют важную роль в нашей техногенной цивилизации, использующей электричество в качестве основного средства передачи энергии на расстоянии. По проводникам электроэнергия поступает от электростанций в наши дома и на всевозможные производственные предприятия, а изоляторы обеспечивают нашу безопасность, ограждая от губительных последствий прямого контакта человеческого организма с высоким электрическим напряжением.

Полупроводники

Наконец, имеется малочисленная категория химических элементов, занимающих промежуточное положение между металлами и изоляторами (самые известные из них — кремний и германий). В кристаллических решетках этих веществ все валентные электроны, на первый взгляд, связаны химическими связями, и свободных электронов для обеспечения электрической проводимости, казалось бы, оставаться не должно. Однако на деле ситуация выглядит несколько иначе, поскольку часть электронов оказывается выбитой со своих внешних орбит в результате теплового движения по причине недостаточной энергии их связи с атомами. В результате при температуре выше абсолютного нуля они все-таки обладают определенной электропроводностью под воздействием внешнего напряжения. Коэффициент проводимости у них достаточно низкий (тот же кремний проводит электрический ток в миллионы раз хуже меди), но какой-то ток, пусть и незначительный, они все-таки проводят. Такие вещества называют полупроводниками .

Как выяснилось в результате исследований, электрическая проводимость в полупроводниках, однако, обусловлена не только движением свободных электронов (так называемой n-проводимостью за счет направленного движения отрицательно заряженных частиц). Имеется и второй механизм электропроводности — при этом весьма необычный. При высвобождении электрона из кристаллической решетки полупроводника за счет теплового движения на его месте образуется так называемая дырка — положительно заряженная ячейка кристаллической структуры, которая может в любой момент оказаться занятой отрицательно заряженным электроном, перескочившим в нее с внешней орбиты соседнего атома, где, в свою очередь, образуется новая положительно заряженная дырка. Такой процесс может продолжаться сколь угодно долго — и выглядеть со стороны (в макроскопическом масштабе) всё будет так, что электрический ток под внешним напряжением обусловлен не движением электронов (которые всего лишь перескакивают с внешней орбиты одного атома на внешнюю орбиту соседнего атома), а направленной миграцией положительно заряженной дырки (дефицита электрона) в направлении отрицательного полюса приложенной разности потенциалов. В итоге в полупроводниках наблюдается и второй тип проводимости (так называемая дырочная или p -проводимость ), обусловленная, конечно же, также движением отрицательно заряженных электронов, но, с точки зрения макроскопических свойств вещества, представляющаяся направленным током положительно заряженных дырок к отрицательному полюсу.

Явление дырочной проводимости проще всего проиллюстрировать на примере дорожной пробки. По мере продвижения вперед машины, застрявшей в ней, на ее месте образуется свободное пространство, которое тут же занимает следующая машина, место которой сразу же занимает третья машина и т. д. Этот процесс можно представить себе двояко: можно описывать редкое продвижение отдельных машин из числа стоящих в длинной пробке; проще, однако, характеризовать ситуацию с точки зрения эпизодического продвижения в противоположном направлении немногочисленных пустот между застрявшими в пробке машинами. Именно руководствуясь подобной аналогией, физики и говорят о дырочной проводимости, условно принимая за данность, что электрический ток проводится не благодаря движению многочисленных, но редко трогающихся с места отрицательно заряженных электронов, а благодаря движению в противоположном направлении положительно заряженных пустот на внешних орбитах атомов полупроводников, которые они условились называть «дырками». Таким образом, дуализм электронно-дырочной проводимости носит чисто условный характер, поскольку с физической точки зрения ток в полупроводниках, в любом случае, обусловлен исключительно направленным движением электронов.

Полупроводники нашли широкое практическое применение в современной радиоэлектронике и компьютерных технологиях именно благодаря тому, что их проводящие свойства легко и точно контролируются посредством изменения внешних условий.

Все вещества по способности проводить электрический ток условно делят на проводники и диэлектрики.Промежуточное положение между ними занимают полупроводники.Под проводниками понимают вещества,в которых имеются свободные носители зарядов,способные перемещаться под действием электрического поля.Проводниками являются металлы,растворы или расплавы солей,кислот и щелочей. Металлы,благодаря своим уникальным свойствам электропроводимости,имеют большое распространение в электротехнике.Для передачи электроэнергии используют в основном медные и алюминиевые провода,в исключительных случаях-серебряные.С 2001г. электропроводку положено выполнять только медными проводами.Алюминиевые провода пока применяют из-за их дешевизны,а также в тех случаях,когда их использование вполне оправданно и не представляет опасности.Алюминиевые провода разрешены для питания стационарных потребителей с известной заранее,гарантированной мощностью,например,насосов,кондиционеров,вентиляторов,бытовых розеток с нагрузкой до 1 кВт,а также для наружной электропроводки (воздушных линий,подземных кабелей и т.п.).В жилищах допустимы только провода на основе меди. Металлы в твердом состоянии имеют кристаллическое строение.Частицы в кристаллах расположены в определенном порядке,образуя пространственную (кристаллическую) решетку.В узлах кристаллической решетки находятся положительные ионы,а в пространстве между ними движутся свободные электроны,которые не связаны с ядрами своих атомов.Поток свободных электронов называют электронным газом.В обычных условиях металл электрически нейтрален,т.к. общий отрицательный заряд всех свободных электронов по обсолютному значению равен положительному заряду всех ионов решетки.Носителями свободных зарядов в металлах являются электроны.Их концентрация достаточно велика.Эти электроны учавствуют в беспорядочном тепловом движении.Под влиянием электрического поля свободные электроны начинают упорядоченное передвижение по проводнику.Тот факт,что электроны в металлах служат носителями электрического тока,доказал на простом опыте немецкий физик Карл Рикке еще в 1899 г.Он взял три цилиндра одинакового радиуса: медный,алюминиевый и медный,расположил их друг за другом,прижал торцами и включил в трамвайную линию,а потом в течение более года прпускал через них электрический ток.После этого он исследовал места контакта металлических цилиндров и не обнаружил в меди атомов алюминия,а в алюминии-атомов меди,т.е. диффузии не было.Из этого он сделал вывод,что при прохождении по проводнику электрического тока ионы остаются неподвижными,а перемещаются лишь свободные электроны,которые одинаковы у всех веществ и не связаны с различием их физико-химических свойств. Итак,электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов под действием электрического поля.Скорость этого движения невелика-несколько миллиметров в секунду,а иногда и еще меньше.Но,как только в проводни ке возникает электрическое поле,оно с огромной скоростью,близкой к скорости света в вакууме (300 000 к/с),распространяется по всей длине проводника.Однолвременно с распростронением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника.Так,например,при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны,имеющиеся в спирали лампы. Когда говорят о скорости распространения электрического тока в проводнике,то имеют в виду скорость распространения по проводнику электрического поля.Электрический сигнал,посланный,например,по проводам из Москвы во Владивосток (расстояние примерно 8000 км),приходит туда примерно через 0,03 с. Диэлектриками или изоляторами называют вещества,в которых нет свободных носителей зарядов,и по этому они не проводят электрический ток.Такие вещества относят к идеальным диэлектрикам.Например,стекло,фарфор,фаянс и мрамор-хорошие изоляторы в холодном состоянии.Кристаллы этих материалов имеют ионную структуру,т.е. состоят из положительно и отрицательно заряженных ионов.Их электрические заряды связаны в кристаллической решетке и не являются свободными,что делает эти материалы диэлектриками. В реальных условиях диэлектрики проводят электрический ток,не очень слабо.Для обеспечения их проводимости следует приложить очень высокое напряжение.Прводимость диэлектриков меньше,чем у проводников.Это связано с тем,что в обычных условиях заряды в диэлектриках связаны в устойчивые молекулы и они не в состоянии,как в проводниках,легко отрываться и становиться свободными.Электрический ток,проходящий через диэлектрики,пропорционален напряженности электрического поля.При некотором критическом значении напряженности электрического поля наступает электрический пробой.Величина называется электрической прочностью диэлектрика и измеряется в В/см.Многие диэлектрики благодаря их высокой электрической прочности используют главным образом как электроизоляционные материалы. Полупроводники при низких напряжениях электрический ток не проводят,а при увеличении напряжения становятся электропроводными.В отличие от проводников (металлов) их проводимость с повышением температуры возрастает.Это особенно заметно,например,у транзисторных радиоприемников,которые плохо работают в жаркую погоду.Для полупроводников характерна сильная зависимость электропроводности от внешних воздействий.Полупроводники широко применяют в различных электротехнических устройствах,поскольку их электропроводностью можно управлять.

Понравилась статья? Поделитесь ей