Контакты

Что я знаю про силу упругости. Сила упругости

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси х ). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L 0 , то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

F уп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

Рис. 2. Портрет Роберта Гука.

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L 0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины. Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 299.

Продолжаем обзор некоторых теми из раздела «Механика». Наша сегодняшняя встреча посвящена силе упругости.

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

  • растяжения;
  • сжатия;
  • сдвига;
  • изгиба;
  • кручения.

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

Механизм возникновение сил упругости удалось объяснить лишь в XX веке, когда была установлена природа сил межмолекулярного взаимодействия. Физики назвали их «гигантом с короткими руками». Каков смысл этого остроумного сравнения?

Между молекулами и атомами вещества действуют силы притяжения и отталкивания. Такое взаимодействие обусловлено, входящими в их состав мельчайших частиц, несущих положительные и отрицательные заряды. Силы эти достаточно велики (отсюда слово гигант), но проявляются лишь на очень малых расстояниях (с короткими руками). При расстояниях равных утроенному диаметру молекулы, эти частицы притягиваются, «радостно» устремляясь, друг к другу.

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

  • F - модуль, т. е. численное значение силы упругости;
  • х - изменение длины тела;
  • k - коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе - . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая - сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Если это сообщение тебе пригодилось, буда рада видеть тебя

Деформация (от лат. Deformatio – искажение) – изменение формы и размеров тела под действием внешних сил.

Деформации возникают потому, что различные части тела движутся по-разному. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным. Рассмотрим несколько примеров.

Виды деформации

Деформации растяжения и сжатия . Если к однородному, закрепленному с одного конца стержню приложить силу F вдоль его оси в направлении от стержня, то он подвергнется деформации растяжения . Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д. Если на закрепленный стержень подействовать силой вдоль его оси по направлению к стержню, то он подвергнется сжатию . Деформацию сжатия испытывают столбы, колонны, стены, фундаменты зданий и т.п. При растяжении или сжатии изменяется площадь поперечного сечения тела.

Деформация сдвига . Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющего собой ряд параллельных пластин, соединенных между собой пружинами (рис. 3). Горизонтальная сила F сдвигает пластины друг относительно друга без изменения объема тела. У реальных твердых тел при деформации сдвига объем также не изменяется. Деформации сдвига подвержены заклепки и болты, скрепляющие части мостовых ферм, балки в местах опор и др. Сдвиг на большие углы может привести к разрушению тела – срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы и т.д.

Деформация изгиба . Легко согнуть стальную или деревянную линейку руками или с помощью какой-либо другой силы. Балки и стержни, расположенные горизонтально, под действием силы тяжести или нагрузок прогибаются – подвергаются деформации изгиба. Деформацию изгиба можно свести к деформации неравномерного растяжения и сжатия. Действительно, на выпуклой стороне (рис. 4) материал подвергается растяжению, а на вогнутой – сжатию. Причем чем ближе рассматриваемый слой к среднему слою KN , тем растяжение и сжатие становятся меньше. Слой KN , не испытывающий растяжения или сжатия, называется нейтральным. Так как слои АВ и CD подвержены наибольшей информации растяжения и сжатия, то в них возникают наибольшие силы упругости (на рисунке 4 силы упругости показаны стрелками). От внешнего слоя к нейтральному эти силы уменьшаются. Внутренний слой не испытывает заметных деформаций и не противодействует внешним силам, а поэтому является лишним в конструкции. Его обычно удаляют, заменяя стержни трубами, а бруски – тавровыми балками (рис. 5). Сама природа в процессе эволюции наделила человека и животных трубчатыми костями конечностей и сделала стебли злаков трубчатыми, сочетая экономию материала с прочностью и меткостью «конструкций».

Деформация кручения . Если на стержень, один из концов которого закреплен (рис. 6), подействовать парой сил, лежащей в плоскости поперечного сечения стержня, то он закручивается. Возникает, как говорят, деформация кручения.

Каждое поперечное сечение поворачивается относительно другого вокруг оси стержня на некоторый угол. Расстояние между сечениями не меняется. Таким образом, опыт показывает, что при кручении стержень можно представить как систему жестких кружков, насаженных центрами на общую ось. Кружки эти (точнее, сечения) поворачиваются на различные углы в зависимости от их расстояния до закрепленного конца. Слои поворачиваются, но на различные углы. Однако при этом соседние слои поворачиваются друг относительно друга одинаково вдоль всего стержня. Деформацию кручения можно рассматривать как неоднородный сдвиг. Неоднородность сдвига выражается в том, что деформация сдвига изменяется вдоль радиуса стержня. На оси деформация отсутствует, а на периферии она максимальна. На самом удаленном от закрепленного конца торце стержня угол поворота наибольший. Его называют углом кручения. Кручение испытывают валы всех машин, винты, отвертки и т.п.

Основными деформациями являются деформации растяжения (сжатия) и сдвига. При деформации изгиба происходит неоднородное растяжение и сжатие, а при деформации кручения – неоднородный сдвиг.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости .

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С , лежащий на ней, действует сила упругости F упр (рис. 7).

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса . На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N 1 , N 2 , N 3 , N 4 и N 5) и сил натяжения подвесов (силы T 1 , T 2 , T 3 и T 4).

Абсолютное и относительное удлинения

Линейная деформация (деформация растяжения) – деформация, при которой происходит изменение только одного линейного размера тела.

Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

\(~\Delta l = |l - l_0|\) ,

где Δl – абсолютное удлинение (м); l и l 0 – конечная и начальная длина тела (м).

  • Если тело растягивают, то l > l 0 и Δl = l l 0 ;
  • если тело сжимают, то l < l 0 и Δl = –(l l 0) = l 0 – l (рис. 9).

\(~\varepsilon = \frac{\Delta l}{l_0}\) или \(~\varepsilon = \frac{\Delta l}{l_0} \cdot 100%\) ,

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l 0 –начальная длина тела (м).

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

\(~F_{ynp} = k \cdot \Delta l\) , (1)

где F упр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость измеряется в ньютонах на метр (Н/м):

\(~[k] = \frac{}{[\Delta l]}\) .

Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной σ , называемой механическим напряжением .

Механическое напряжение σ равно отношению модуля силы упругости F упр к площади поперечного сечения тела S :

\(~\sigma = \frac{F_{ynp}}{S}\) .

Измеряется механическое напряжение в Па: [σ ] = Н/м 2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε :

\(~\sigma = E \cdot |\varepsilon|\) . (2)

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга) . Экспериментально установлено, что

модуль Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что \(~E = \frac{\sigma}{\varepsilon}\) . Если модуль Юнга E численно равен механическому напряжению σ , то \(~\varepsilon = \frac{\Delta l}{l_0} = 1\) . Тогда \(~\Delta l = l - l_0 = l_0 ; l = 2 l_0\) .

Измеряется модуль Юнга в Па: [E ] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е , тем меньше деформируется стержень при прочих равных условиях (l 0 , S , F ). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия .

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) \(~\sigma = \frac{F_{ynp}}{S}\) и \(~\varepsilon = \frac{\Delta l}{l_0}\) , получим:

\(~\frac{F_{ynp}}{S} = E \cdot \frac{\Delta l}{l_0}\) или \(~F_{ynp} = \frac{E \cdot S}{l_0} \cdot \Delta l\) ,

где \(~\frac{E \cdot S}{l_0} = k\) .

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε . Этот график называют диаграммой растяжения (рис. 10).

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σ п . Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK ). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σ уп . Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK ). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала .

При дальнейшем увеличении нагрузки напряжение повышается (от точки D ), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е ) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К ). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности . Обозначим его σ пч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности . Обозначив запас прочности через n, получим:

\(~n = \frac{\sigma_{np}}{\sigma}\) .

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала при малых деформациях ведет себя как упругое. В то же время почти все тела в той или иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε , порядка десятков процентов. Поэтому такие материалы называют упругими .

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными .

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь или железо с трудом поддаются ковке молотом. Но после сильного нагрева им легко придать посредством ковки любую форму. Пластичный при комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых тел, называемое хрупкостью . Тело называют хрупким , если оно разрушается при небольших деформациях . Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

Рис. 11

Чугун разрушается сразу при удлинении на 0,45%, почти не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с удлинением, и они разрушаются при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащих-ся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  4. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физ-матлит, 2004. – 608 с.
  5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Составители

Ванкович Е. (11 «А» МГОЛ № 1), Шкрабов А. (11 «В» МГОЛ № 1).

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила.

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как Сила Кулона, сила Ампера, сила Лоренца.

Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Локальная система отсчёта - это система отсчёта, которая может считаться инерциальной, но лишь в бесконечно малой окрестности какой-то одной точки пространства-времени, или лишь вдоль какой-то одной незамкнутой мировой линии.

Преобразования Галилея. Принцип относительности в классической механике.

Преобразования Галилея. Рассмотрим две системы отсчета движущиеся друг относительно друга и с постоянной скоростью v 0 .Одну из этих систем обозначим буквой K. Будем считать неподвижной. Тогда вторая система Kбудет двигаться прямолинейно и равномерно. Выберем координатные оси x,y,z системы K и x",y",z" системы K" так что оси x и x" совпадали, а оси y и y" , z и z", были параллельны друг другу. Найдем связь между координатами x,y,z некоторой точки P в системе K и координатами x",y",z" той же точки в системе K". Если начать отсчёт времени с того момента, когда начало координат системы, совпадали, то x=x"+v 0 , кроме того, очевидно, что y=y", z=z". Добавим к этим соотношениям принятое в классической механике предположение, что время в обеих системах течёт одинаковым образом, то есть t=t". Получим совокупность четырёх уравнений: x=x"+v 0 t;y=y";z=z";t=t", названных преобразованиями Галилея.Механический принцип относительности. Положение о том, что все механические явления в различных инерциальных системах отсчёта протекают одинаковым образом, вследствие чего никакими механическими опытами невозможно установить, покоится ли система или движется равномерно и прямолинейно носит названия принцип относительности Галилея.Нарушение классического закона сложения скоростей. Исходя из общего принципа относительности (никаким физическим опытом нельзя отличить одну инерциальною систему от другой), сформулированным Альбертом Эйнштейном, Лоуренс изменил преобразования Галилиея и получил: x"=(x-vt)/(1-v 2 /c 2); y"=y; z"=z; t"=(t-vx/c 2)/(1-v 2 /c 2). Эти преобразования называются преобразованиями Лоуренса.

Сила упругости - одна из сил взаимодействия тел, и ее изучением занимается механика. Как она возникает, от чего зависит, куда направлена? Прочитав статью, вы узнаете ответы на эти вопросы.

Как и когда возникает сила упругости?

Проведем эксперимент:

  • укрепим пружинку с помощью пластилина на нижней стороне горизонтальной поверхности, например, стола;
  • подвесим к свободному концу пружинки небольшой груз.

Рис. 1. Сила упругости

Из-за действия силы тяжести груз должен был упасть. Почему же этого не произошло? Причина - сила упругости, которая подействовала на груз со стороны пружинки. В общем случае ее возникновение обусловлено деформацией: растяжением, сжатием, сдвигом, кручением или изгибом. В нашем эксперименте она возникла из-за растяжения пружинки.

Направление силы упругости

Каждое тело содержит молекулы и атомы, которые состоят из заряженных частиц. Они притягиваются и отталкиваются друг от друга с определенной силой. Какое из этих взаимодействий будет преобладать, зависит от расстояния между ними.

Рис. 2. Заряженные частицы

Увеличение расстояния ведет к увеличению действия сил притяжения, уменьшение - к преобладанию сил отталкивания. В состоянии же покоя тела обе силы находятся в равновесии.

Из вышесказанного можно однозначно сказать, почему и куда направлена сила упругости. Ее направление противоположно движению атомов и молекул тела, так как она стремится восстановить первоначальную форму тела.

Взаимодействия между заряженными частицами обуславливают электромагнитную природу силы упругости.

Всегда ли деформация приводит к появлению силы упругости?

Вспомните, как легко пружинка восстанавливает свою форму, а вот пластилин всегда ее сохраняет. Происходит это из-за существования двух предельных случаев деформаций. Пример с пружинкой демонстрирует проявление упругой, а с пластилином - пластической деформации.

Когда мы говорим о силе упругости, то имеем в виду только упругую деформацию. Причем, значение ее невелико, и длится она недолго. Для пластической деформации характерны другие силы. Они зависят от скорости возникновения деформаций. Их не изучают в курсе физики 10 класса.

Связь между силой упругости и деформацией

Какова связь между силой упругости и деформацией? Как найти ее? Ответы на эти вопросы нашел английский изобретатель и естествоиспытатель Роберт Гук. Результаты его экспериментов показали линейный характер связи. В письменном виде установленный им закон выглядит следующим образом:

Fупр=k|Δl| или Fупр=k|x| ,

где k - коэффициент упругости, Δl , или x - абсолютное удлинение.

Δl , или x – разница между длиной деформированного тела и начальной длиной в метрах (м).

k -жесткость. Она выражается в ньютонах на метр (Н/м), ее значение обуславливают размеры тела и свойства материала. Единица измерения Fупр – ньютон (Н).

Обратите внимание, что закон Гука применяется только в случае малых упругих деформаций.

Понравилась статья? Поделитесь ей