Контакты

Числовой ряд примеры с решением. Признаки сходимости числовых рядов

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

Необходимый признак сходимости ряда

ТЕОРЕМА 1

Если ряд сходится, то его общий член стремится к нулю при
, т.е.
.

Кратко : если ряд сходится, то его общий член стремится к нулю.

Доказательство. Пусть ряд сходится и его сумма равна . Для любого частичная сумма



.

Тогда . 

Из доказанного необходимого признака сходимости вытекает достаточный признак расходимости ряда: если при
общий член ряда не стремится к нулю, то ряд расходится.

Пример 4.

Для этого ряда общий член
и
.

Следовательно, данный ряд расходится.

Пример 5. Исследовать на сходимость ряд

Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при
, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

Знакоположительные числовые ряды

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2 (Критерий сходимости знакоположительного ряда)

Для сходимости знакоположительного ряда необходимо и достаточно, чтобы все его частичные суммы были ограничены сверху одним и тем же числом.

Доказательство. Так как для любого
, то, т.е. последовательность
– монотонно возрастающая, поэтому для существования предела необходимо и достаточно ограничение последовательности сверху каким-либо числом.

Эта теорема в большей степени имеет теоретическое, чем практическое значение. Далее приведены другие признаки сходимости, имеющие большее применение.

Достаточные признаки сходимости знакоположительных рядов

ТЕОРЕМА 3 (Первый признак сравнения)

Пусть даны два знакоположительных ряда:

(1)

(2)

причем, начиная с некоторого номера
, для любого
выполняется неравенство
Тогда:

Схематическая запись первого признака сравнения:

сход.сход.

расх.расх.

Доказательство. 1) Так как отбрасывание конечного числа членов ряда не влияет на его сходимость, докажем теорему для случая
. Пусть для любого
имеем


, (3)

где
и
- соответственно частичные суммы рядов (1) и (2).

Если ряд (2) сходится, то существует число
. Поскольку при этом последовательность
- возрастающая, ее предел больше любого из ее членов, т.е.
для любого . Отсюда из неравенства (3) следует
. Таким образом, все частичные суммы ряда (1) ограничены сверху числом . Согласно теореме 2 этот ряд сходится.

2) Действительно, если бы ряд (2) сходился, то по признаку сравнения сходился бы и ряд (1). 

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:


3) - ряд Дирихле (он сходится при
и расходится при
).

Кроме этого часто используют ряды, которые можно получить с помощью следующих очевидных неравенств:


,

,
,
.

Рассмотрим на конкретных примерах схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 6. Исследовать ряд
на сходимость.

Шаг 1. Проверим знакоположительность ряда:
для

Шаг 2. Проверим выполнение необходимого признака сходимости ряда:
. Так как
, то

(если вычисление предела вызывает трудности, то этот шаг можно пропустить).

Шаг 3. Используем первый признак сравнения. Для этого подберем для данного ряда ряд-эталон. Так как
, то в качестве эталона можно взять ряд
, т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени
. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 7. Исследовать ряд
на сходимость.

1) Данный ряд знакоположительный, так как
для

2) Необходимый признак сходимости ряда выполняется, ибо

3) Подберем ряд-эталон. Так как
, то в качестве эталона можно взять геометрический ряд

. Этот ряд сходится, следовательно, сходится и исследуемый ряд.

ТЕОРЕМА 4 (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел
, то
ряды сходятся или расходятся одновременно.

Доказательство. Пусть ряд (2) сходится; докажем, что тогда сходится и ряд (1). Выберем какое-нибудь число , большее, чем . Из условия
вытекает существование такого номера , что для всех
справедливо неравенство
, или, что то же,

(4)

Отбросив в рядах (1) и (2) первые членов (что не влияет на сходимость), можно считать, что неравенство (4) справедливо для всех
Но ряд с общим членом
сходится в силу сходимости ряда (2). Согласно первому признаку сравнения, из неравенства (4) следует сходимость ряда (1).

Пусть теперь сходится ряд (1); докажем сходимость ряда (2). Для этого следует просто поменять ролями заданные ряды. Так как

то, по доказанному выше, из сходимости ряда (1) должна следовать сходимость ряда (2). 

Если
при
(необходимый признак сходимости), то из условия
, следует, чтои– бесконечно малые одного порядка малости (эквивалентные при
). Следовательно, если дан ряд , где
при
, то для этого ряда можно брать ряд-эталон , где общий член имеет тот же порядок малости, что и общий член данного ряда.

При выборе ряда-эталона можно пользоваться следующей таблицей эквивалентных бесконечно малых при
:

1)
; 4)
;

2)
; 5)
;

3)
; 6)
.

Пример 8. Исследовать на сходимость ряд

.


для любого
.

Так как
, то возьмем в качестве ряда-эталона гармонический расходящийся ряд
. Поскольку предел отношения общих членовиконечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

Пример 9.
по двум признакам сравнения.

Данный ряд знакоположительный, так как
, и
. Поскольку
, то в качестве ряда-эталона можно брать гармонический ряд. Этот ряд расходится и следовательно, по первому признаку сравнения, исследуемый ряд также расходится.

Так как для данного ряда и ряда-эталона выполняется условие
(здесь использован 1-й замечательный предел), то на основании второго признака сравнения ряд
– расходится.

ТЕОРЕМА 5 (Признак Даламбера)

существует конечный предел
, то ряд сходится при
и расходится при
.

Доказательство. Пусть
. Возьмем какое-либо число, заключенное между и 1:
. Из условия
следует, что начиная с некоторого номера выполняется неравенство

;
;
(5)

Рассмотрим ряд

Согласно (5) все члены ряда (6) не превосходят соответствующих членов бесконечной геометрической прогрессии
Поскольку
, эта прогрессия является сходящейся. Отсюда в силу первого признака сравнения вытекает сходимость ряда

Случай
рассмотрите самостоятельно.

Замечания :


следует, что остаток ряда

.

    Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 10. Исследовать на сходимость ряд по признаку Даламбера.

Данный ряд знакоположительный и

.

(Здесь при вычислении дважды применено правило Лопиталя).

то по признаку Даламбера данный ряд сходится.

Пример 11. .

Данный ряд знакоположительный и
. Поскольку

то данный ряд сходится.

ТЕОРЕМА 6 (Признак Коши)

Если для знакоположительного ряда существует конечный предел
, то при
ряд сходится, а при
ряд расходится.

Доказательство аналогично теореме 5.

Замечания :


Пример 12. Исследовать на сходимость ряд
.

Данный ряд знакоположительный, так как
для любого
. Поскольку вычисление предела
вызывает определенные трудности, то проверку выполнимости необходимого признака сходимости ряда опускаем.

то по признаку Коши данный ряд расходится.

ТЕОРЕМА 7 (Интегральный признак сходимости Маклорена - Коши)

Пусть дан ряд

члены которого положительны и не возрастают:

Пусть, далее
- функция, которая определена для всех вещественных
, непрерывна, не возрастает и

Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

Приложение

Онлайн сервис сайт поможет найти сумму ряда онлайн как числовой последовательности, так и функционального ряда. Сумма ряда для математиков есть нечто особое в понимании анализа числовых величин и предельного перехода. Про общее решение рядов сказано и написано очень много полезных трудов за прошедшие несколько столетий. Лично для каждого преподавателя служит важным долгом донести свои накопленные знания в математике до конечного слушателя, то есть студента. Искать проще простого такую сумму ряда 1/n. Будет вам сумма ряда 1/n^2 представлена в краткой записи.. Наряду с определением суммы ряда онлайн последовательности числовой, сайт в онлайн режиме может найти так называемую частичную сумму ряда. Однозначно это поможет для аналитических представлений, когда сумму ряда онлайн нужно выразить и найти как решение лимита числовой последовательности частичных сумм ряда. По свое сути сумма ряда есть не что иное, как обратная операция разложения функции в ряд. Операции практически взаимные по природе. Так уж сложилось, что сходимость ряда изучается после прохождения курса лекции в математическом анализе после пределов. Найденное решение рядов означает результат исследования его на сходимость или расходимость. Этот результат определяется однозначно. В сравнении с аналогами, сайт имеет свои неоспоримые преимущества, потому что умеет найти сумму ряда онлайн как числового, так и функционального ряда, что позволяет однозначно определять область сходимости начального исходного ряда, применяя практически все известные науке методологии. Опираясь на теорию рядов, необходимым во все времена условием сходимости последовательности числовой будет равенство нулю лимита общего члена числового ряда на бесконечности. Но это условие является не достаточным при установлении сходимости числового ряда онлайн. Немного отвлечемся от насущной проблемы и порассуждаем с другой философской позиции по поводу рядов в математике. Для вас это решение рядов онлайн позволит стать наилучшим калькулятором и помощником на каждый день. Совсем не охота просиживать прекрасные зимние деньки за уроками, когда сумма ряда находится в два счета прямо на ваших глазах. Если понадобится кому-то определить ту самую ходимость ряда, то потребуется несколько секунд после предварительного ввода правильных данных. В то время, как аналогичные сайты требуют вознаграждения за свои услуги, мы стараемся быть полезными каждому желающему попробовать научиться самому решать примеры, используя наш простой сервис. На ваше усмотрение мы можем представить решение рядов в онлайн режиме на любом современном устройстве, то есть в любом браузере.. Так вот найти и доказать, что сумма ряда 1/n на бесконечности расходится - будет простым заданием. Навсегда запомните, как сумма ряда 1/n^2 сходится и имеет в математике огромное смысловое значение. А вот сумма конечного ряда обычно определяется после использования, например, интегрального признака или признака Раабе, о котором мало кто знает в рядовых вузах. По определению сходимости рядов онлайн учеными выведены разные достаточные признаки сходимости или расходимости ряда. Более известны и часто применяемы из этим методов - это признаки Д"Аламбера, признак сходимости Коши, признак сходимости Раабе, признак сравнения числовых рядов, а также интегральный признак сходимости числового ряда. Заслуживают особого внимания такие числовые ряды, у которых знаки слагаемых обязательно строго чередуются друг за другом с минуса на плюс и обратно, а абсолютные величины этих числовых рядов убывают монотонно, то есть равномерно. На практике изучения рядов оказалось, что для таких числовых рядов необходимый признак сходимости знакопеременного ряда онлайн является достаточным, то есть равенство нулю лимита общего члена числового ряда на бесконечности. Найденная сумма ряда таким способом оказывается равносильно другим применяемым методам. Сходимость ряда занимает колоссальную трату времени, так как сам процесс предполагает полное исследование функции.. Есть много разных сайтов, которые представляют сервисы вычисления суммы ряда онлайн, а также разложения функций в ряд в режиме онлайн в любой точке из области определения исследуемой функции. Разложить функцию в ряд онлайн в этих сервисах можно без труда, так как используется функционал вычисления производной, а вот обратная операция - найти сумму функционального онлайн ряда, членами которого являются не числа, а функции, не редко бывает невозможным на практике в силу трудностей, возникающих на почве отсутствия необходимых вычислительных ресурсов.. Используйте наш ресурс для вычислений суммы рядов онлайн, проверки и закрепления своих знаний. Если же сумма ряда расходится, то мы не получим ожидаемого результата для дальнейших действий в какой-то общей задачей. Этого можно заранее избежать, применяя свои знания как специалиста. Напоследок нельзя не упомянуть как сумма ряда 1/n самая простая в выражении и ее часто приводят в пример. Даже когда хотят показать некоторый признак сходимости в деле, то доказывают это для суммы ряда 1/n^2, потому что прозрачно для учеников такое представление и не путаются студенты. Поскольку имеем выражение для сложного общего члена ряда, то сумма конечного ряда была бы полезна, если будет доказано для мажорирующего ряда (относительно исходного) его сходимость. С другой стороны сходимость ряда будет происходить независимо от начальных условий задачи. Лучшее решение рядов может предложить только наш сервис сайт, потому что только мы гарантируем экономию вашего времени, соотнеся траты на вычисление с полезность и точностью результата. Поскольку искомая сумма ряда представима в большинстве случаев мажорирующим рядом, то как раз целесообразнее исследовать именно его. Отсюда сходимость ряда от мажорирующего общего члена однозначно укажет на сходимость основного выражения, и задача решится сама собой сразу же.. Преподаватели высших учебных заведений также могут использовать наше решение рядов онлайн и проверять работы своих подопечных курсантов. Для некоторого случая сумма ряда может быть вычислена в задаче для физики, химии или прикладной дисциплины, не застревая в рутинных вычислениях, чтобы не сбиться с основного направления при исследовании некоторого природного процесса. Для начала обычно записывают самое что не наесть упрощённое выражение в виде суммы ряда 1/n и оправдан такой подход. Число Пи присутствует во многих вычислительных операциях, но сумма ряда 1/n^2 можно сказать является классическим пример сходимости гармонического ряда на бесконечности. Что же все-таки означает выражение "сумма конечного ряда"? А это означает как раз, что он сходится и предел его частичных сумм имеет конкретное числовое значение. Если же подтвердится сходимость ряда и это повлияет на конечную устойчивость системы, то тогда возможно изменить входные параметры задачи и попробовать сделать заново. Напоследок хотим вам дать неявный на первый взгляд, но очень полезный на практике совет. Даже если вы имеет достаточный опыт в решении рядов и не нуждаетесь в подобных сервисах по решению рядов онлайн, приступить к нахождению суммы ряда мы предлагаем вам с определения сходимости ряда. Потратьте всего минуту на это действие, используя сайт, чтобы на протяжении всего вычисления суммы ряда просто держать этот факт в голове. Лишним не будет! О сумме ряда онлайн много написано на сайтах по математике, приложено много иллюстраций как в прошлом веке ученые обозначали символами выражения суммы ряда. По большому счету мало что изменилось, но интересные моменты есть. Если сходимость ряда в онлайне представляется невозможным, то просто проверьте введенные данные и спокойно повторите запрос. Лучше все-таки сначала перепроверить общий член ряда. И всякое решение рядов онлайн покажется сразу на сайте, вам не придется нажимать дополнительные ссылки для того, чтобы получить ответ на поставленную задачу. Лучшее, по мнению экспертов, заставляет студентов более требовательно подходить к выбору калькулятора решения рядов. В сумму ряда как онлайн сервиса вкладывают понятие сходимости ряда, то есть существование конечной суммы. Наряду с этим разделом представлены такие базовые темы как интегралы и производная, поскольку все они тесно связаны. Давайте вместе с нами поговорим как сумма ряда 1/n расходится при стремлении переменной к бесконечности. Однако другая сумма такого ряда как 1/n^2 будет наоборот сходиться и примет конечное числовое выражение. Интересно изучать случаи, когда сумма конечного ряда представляется постепенно в виде промежуточных частичных сумм ряда при пошаговом увеличении переменной на единицу, а может и несколько единиц сразу. Проверку на сходимость ряда в онлайне рекомендуем делать после собственных решений заданий. Это позволит вам детально разобраться в теме и повысить свой уровень знаний. Не забывайте про это никогда, мы стараемся только для вас. Как-то на уроке учитель показал решение рядов онлайн с помощью вычислительной техники. Нужно сказать, что это всем понравилось изрядно. После этого случая калькулятор был востребован на всем курсе изучения математики. Лишним не будет проверить, как сумма ряда вычисляется калькулятором онлайн за несколько секунд после того, как вы запросите показать результат. Сразу станет понятно, в каком направлении стоит держать ход решения задачи. Поскольку о сходимости ряда в некоторых дорогих учебниках написано не много, то лучше скачать из Интернета несколько хороших докладов выдающихся ученых и пройти курс обучения по их методике. Результат будет хорошим. При решении рядов нельзя исключать самый первый признак сходимости, а именно стремление к нулю предела общего его члена. Хоть и не достаточное это условие, но необходимое всегда. Целостность решенного примера производит приятное ощущение на ученика, когда он понимает, что сумма ряда вычислена не прибегая к подсказкам. Учебники предназначены как пособие к применению на практике своих навыков. По мере забывания пройденного материала, нужно каждый четверг уделять хотя бы пять минут на беглый просмотр лекций, иначе к началу сессии вы все позабудете, а как вычисляется сходимость ряда вы тем более позабудете. Начните с одного раза и в дальнейшем переборите свою лень. Не зря заставляют преподаватели доказывать, как сумма ряда 1/n будет расходится. А вот если все-таки сумма ряда 1/n^2 будет представлена как знакопеременный ряд, то ничего страшного не случится - ведь абсолютный ряд то сходится! Ну и конечно сумма конечного ряда для вас может представлять особый интерес, когда вы изучаете эту дисциплину самостоятельно. Львиную долю примеров решают с помощью метода Даламбера и решение рядов при этом сводится к вычислению пределов, как отношение его соседних членов, а именно последующего на предыдущий. Поэтому желаем вам удачи в решении математики и пусть вы никогда не будете ошибаться! Возьмем за базовую основу так называемое решение рядов онлайн по направлению исследовательского разногласия причастности основополагающих принципов и научных межотраслевых направлений. Позвольте нам для вас найти ответ и рассказать утвердительно, что сумма ряда решается несколькими принципиально разными методами, но в конце концов результат один и тот же. Подсказка про сходимость ряда не всегда очевидна для студентов, даже если им заранее сказать ответ, хотя конечно это безусловно подталкивает их к правильному ходу решения. Абстракция в математике хоть и выступает на первое местною, однако она подкреплена теорией и доказывает некоторые неоспоримые факты в два счета. Нельзя пропустить такой аспект при решении рядов онлайн, как применимость или неприменимость базовых теоретических принципом сходимости числового ряда и представления сложной суммы ряда в некотором упрощенном варианте для более приятного глазу вида. Но известны случаи, когда сумма ряда 1/n будет сходиться и мы не станем вас напрягать этим казусом, потому что всего на просто нужно вместо символа бесконечности подставить некоторое целое число и тогда вся сумма сведется к обычному арифметическому ряду. Гармоничный ряд это сумма ряда 1/n^2, то сеть в любой возведенной степени.

Перед началом работы с этой темой советую посмотреть раздел с терминологией для числовых рядов. Особенно стоит обратить внимание на понятие общего члена ряда и свойства числовых рядов (в частности, нам понадобятся свойства №3 и №4). Если у вас есть сомнения в правильности выбора признака сходимости, советую глянуть тему "Выбор признака сходимости числовых рядов" .

Признаки сравнения применяются для исследования числовых рядов, члены которых неотрицательны, т.е. больше или равны нулю. Такие ряды называются положительными (в части литературы - неотрицательными или знакоположительными). Именно такие ряды мы и станем рассматривать в данной теме.

Первый признак сравнения (или первая теорема сравнения) формулируется следующим образом:

Первый признак сравнения

Пусть заданы два положительных ряда $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$. Если начиная с некоторого номера $n_0$ выполнено неравенство $u_n≤ v_n$, то:

  1. если ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится, то ряд $\sum\limits_{n=1}^{\infty}v_n$ будет расходящимся.
  2. если ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится, то ряд $\sum\limits_{n=1}^{\infty}u_n$ будет сходящимся.

Упрощённо говоря, если ряд с меньшими членами не имеет суммы (расходится), то и ряд с бо́льшими членами тоже будет расходиться. И это логично, ибо если исходная сумма была бесконечно большой, то после увеличения слагаемых она такой и останется.

Ну, и если ряд с бо́льшими членами имеет сумму (сходится), то и ряд с меньшими членами тоже будет сходиться.

Признак сравнения можно сформулировать также и в иной форме. Обычно говорят, что это второй признак сравнения (или вторая теорема сравнения). Иногда его называют предельным признаком сравнения или признаком сравнения в предельной форме. Формулировка его такова:

Второй признак сравнения

Пусть заданы два положительных ряда $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$. Если при условии $v_n\neq 0$ существует предел $$\lim_{n\to\infty}\frac{u_n}{v_n}=K,$$ где $0 < K < \infty$, то ряды $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$ сходятся либо расходятся одновременно.

Заметьте, что для применения признаков сравнения нам нужно иметь некий ряд, сходимость которого известна заранее. Чаще всего в роли ряда для сравнения выступает обобщённый гармонический ряд

\begin{equation}\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}\end{equation}

Если $\alpha > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}$ сходится, а если $\alpha ≤ 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}$ расходится. Например, ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^5}$ сходится, так как $5 > 1$, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n^4}}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{7}}}$ расходится, так как $\frac{4}{7}≤ 1$.

Особо стоит обратить внимание на случай $\alpha=1$, т.е. ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^1}=\sum\limits_{n=1}^{\infty}\frac{1}{n}$. Ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ называют гармоническим рядом. Гармонический ряд расходится.

Кроме того, частенько для сравнения используется ряд такого вида:

\begin{equation}\sum\limits_{n=1}^{\infty}aq^n\end{equation}

Этот ряд представляет собой сумму членов геометрической прогрессии с первым членом $b_1=a$ и знаменателем $q$. Этот ряд сходится если $|q| < 1$ и расходится если $|q|≥ 1$. Например, ряд $\sum\limits_{n=1}^{\infty}\frac{4\cdot 3^n}{5^n}=\sum\limits_{n=1}^{\infty}\left(4\cdot\left(\frac{3}{5}\right)^n\right)$ подпадает под вид ряда (2). Этот ряд сходится, так как $\left| \frac{3}{5}\right|=\frac{3}{5} < 1$.

Чаще всего в стандартных примерах признаки сравнения применяются, если общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Например, $u_n=\frac{9n+7}{2n^3+5n^2-4}$ (см. пример №1). Или же вместо многочленов (или вместе с ними) могут присутствовать корни от многочленов (см. пример №3). Для рядов такого вида приходится выбирать между необходимым признаком сходимости и признаками сравнения. Иногда общий член ряда может содержать не только многочлен, а и некий "отвлекающий элемент", который не влияет на сходимость (см. вторую часть этой темы). Иногда, чтобы увидеть ряд для сравнения, приходится использовать эвивалентные бесконечно малые функции (см. примеры в третьей части).

Пример №1

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Так как при $n≥ 1$ имеем $9n+7 > 0$ и $2n^3+5n^2-4 > 0$, то $u_n > 0$. Следовательно, наш ряд является положительным. Кстати сказать, для положительного ряда достаточно выполнения условия $u_n≥ 0$. Однако для нашего ряда мы можем записать более точно: $u_n > 0$.

Для начала неплохо бы проверить выполнение , т.е. найти $\lim_{n\to\infty}u_n$. Вдруг нам повезёт и окажется, что $\lim_{n\to\infty}u_n\neq 0$? Тогда ряд будет расходиться, и решение на этом закончится. При нахождении предела будем использовать метод, описанный в теме . В процессе решения разделим числитель и знаменатель на $n^3$:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{9n+7}{2n^3+5n^2-4}=\left|\frac{\infty}{\infty} \right|=\lim_{n\to\infty}\frac{\frac{9}{n^2}+\frac{7}{n^3}}{2+\frac{5}{n}-\frac{4}{n^3}}=\frac{0+0}{2+0-0}=0. $$

Для того, чтобы эти признаки использовать, нам понадобится ряд, с которым станем сравнивать. Чтобы выбрать ряд для сравнения, поисследуем поведение общего члена заданного нам ряда при $n\to\infty$. Это можно сделать с помощью несколько неформальных рассуждений. Так как эти рассуждения, возможно, будут интересны не всем читателям, то я скрою их под примечание.

Как выбрать ряд для сравнения? показать\скрыть

Я не буду касаться такой темы как порядок роста, просто приведу некие общие соображения. Давайте посмотрим на общий член ряда повнимательнее. Сначала обратимся, например, к знаменателю. В знаменателе общего члена ряда расположены степени $n^3$, $n^2$ и число -4. Номер $n$ всё увеличивается, стремясь в бесконечность. Вопрос: какой элемент ($n^3$ или $n^2$) с возрастанием номера $n$ будет расти быстрее прочих?

Ответ здесь прост: наиболее быстро будет увеличивать свои значения именно $n^3$. Например, когда $n=100$, то $n^2=10\,000$, а $n^3=1\,000\,000$. И этот разрыв между значениями $n^2$ и $n^3$ будет всё больше и больше. Поэтому все слагаемые знаменателя, кроме тех, что содержат $n^3$, мы мысленно отбросим. В числителе также проведем подобную процедуру "отбрасывания", оставив лишь $9n$ (число 7 в числителе явно не сыграет никакой роли по сравнению с $9n$). Таким образом дробь $\frac{9n+7}{2n^3+5n^2-4}$ после всех отбрасываний станет такой: $\frac{9n}{2n^3}=\frac{9}{2}\cdot\frac{1}{n^2}$. Иными словами, если $n\to\infty$, то общий член ряда будет крайне мало отличаться от выражения $\frac{9}{2}\cdot\frac{1}{n^2}$.

Множитель $\frac{9}{2}$ можно также отбросить, ибо он не влияет на сходимость. И останется после такой "очистки" лишь $\frac{1}{n^2}$. А что мы можем сказать про ряд с общим членом $v_n=\frac{1}{n^2}$? Это . В знаменателе общего члена этого ряда степень $n$ равна 2, поэтому так как $2 > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится.

Вот с этим сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ мы и станем сравнивать заданный нам ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$. По сути, мы уже неформально решили задачу: наш ряд будет сходиться. Осталось лишь показать это строгими рассуждениями.

Рассмотрим, как решить нашу задачу с помощью как первого, так и второго признаков сравнения.

Итак, общий член ряда таков: $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Неформальными рассуждениями (скрытыми выше под примечание) мы пришли к выводу, что наш ряд сходится. Для этого случая применяется второй пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $\frac{9n+7}{2n^3+5n^2-4}≤ v_n$, при этом ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится. Тогда и заданный нам ряд будет сходиться.

Станем увеличивать дробь $\frac{9n+7}{2n^3+5n^2-4}$. Наша цель: привести данную дробь к виду $\frac{1}{n^2}$. Почему именно к этому виду? Для ответа на данный вопрос прошу раскрыть примечание выше.

Чтобы увеличить некую дробь, есть два пути: увеличить числитель или уменьшить знаменатель. Согласитесь, что так как $n≥ 1$, то $9n+7 ≥ 9n+7n=16n$. Следовательно, если мы в числителе вместо $9n+7$ разместим выражение $16n$, то увеличим рассматриваемую дробь:

$$ \frac{9n+7}{2n^3+5n^2-4}≤\frac{16n}{2n^3+5n^2-4}. $$

Пойдём далее и поработаем со знаменателем. Чтобы увеличить дробь, знаменатель нужно уменьшить. Например, можно рассудить так: мы знаем, что $n≥ 1$. Тогда $5n^2-4 > 0$. Значит, если мы отбросим в знаменателе выражение $5n^2-4$, то знаменатель уменьшится. Следовательно, наша дробь увеличится. Продолжим предыдущее неравенство:

$$ \frac{9n+7}{2n^3+5n^2-4}≤\frac{16n}{2n^3+5n^2-4} < \frac{16n}{2n^3}=8\cdot\frac{1}{n^2}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится, то будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\left(8\cdot\frac{1}{n^2}\right)$ (см. пункт №4 в разделе про свойства числовых рядов). Так как ряд $\sum\limits_{n=1}^{\infty}\left(8\cdot\frac{1}{n^2}\right)$ сходится и $\frac{9n+7}{2n^3+5n^2-4} < 8\cdot\frac{1}{n^2}$, то согласно (пункт №2) ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$ сходится.

Если в предыдущем пункте мы занимались самодеятельностью, выбирая и отбрасывая некие "куски" в формуле общего члена ряда, то решение с помощью предельного признака сравнения полностью алгоритмично. В примечании выше мы уже выяснили, что сравнивать наш ряд нужно с сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$. Итак, общий член нашего ряда $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Общий член ряда, с которым мы сравниваем: $v_n=\frac{1}{n^2}$. работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Кстати сказать, нам совершенно всё равно, какой общий член располагать в числителе, а какой - в знаменателе. Главное, чтобы выражение в знаменателе не равнялось нулю. Например, так как $v_n\neq 0$, то этот общий член вполне можно расположить в знаменателе:

$$ \lim_{n\to\infty}\frac{\frac{9n+7}{2n^3+5n^2-4}}{\frac{1}{n^2}}=\lim_{n\to\infty}\frac{n^2\cdot(9n+7)}{2n^3+5n^2-4}=\lim_{n\to\infty}\frac{9n^3+7n^2}{2n^3+5n^2-4}=\left|\frac{\infty}{\infty} \right|=\\ =\lim_{n\to\infty}\frac{\frac{9n^3}{n^3}+\frac{7n^2}{n^3}}{\frac{2n^3}{n^3}+\frac{5n^2}{n^3}-\frac{4}{n^3}}=\lim_{n\to\infty}\frac{9+\frac{7}{n}}{2+\frac{5}{n}-\frac{4}{n^3}}=\frac{9+0}{2+0-0}=\frac{9}{2}. $$

Так как $0<\frac{9}{2}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится, то одновременно с ним будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$.

В общем случае, конечно, выбирают один признак сравнения, а не оба сразу:) При решении примеров на этой странице я буду использовать оба способа - для наглядности.

Ответ : ряд сходится.

Пример №2

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{4n^3+2n+9}{n^2(3n+5)^2}$. Общий член $u_n > 0$, т.е. наш ряд является положительным.

Как и в предыдущем примере, попробуем проверить выполнение необходимого условия сходимости , т.е. найдём $\lim_{n\to\infty}u_n$. При нахождении предела будем использовать метод, описанный в теме "Предел отношения двух многочленов" . В ходе решения разделим и числитель и знаменатель на $n^4$:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}=\left|\frac{\infty}{\infty}\right|=\lim_{n\to\infty}\frac{\frac{4}{n}+\frac{2}{n^3}+\frac{9}{n^4}}{\left(3+\frac{5}{n}\right)^2}=\frac{0+0+0}{(3+0)^2}=0. $$

Так как $\lim_{n\to\infty}u_n=0$, то никакого вывода про сходимость нашего ряда мы сделать не в состоянии. Ряд может как сходиться, так и расходиться. Попробуем применить признаки сравнения.

Выясним, с каким же рядом нужно сравнивать заданный в условии ряд. Попробуем отбросить "лишние" элементы числителя и знаменателя точно так же, как это было сделано в примере №1. Останется у нас такая дробь: $\frac{4n^3}{n^2\cdot (3n)^2}=\frac{4}{9}\cdot\frac{1}{n}$. Вот с гармоническим рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ мы и станем сравнивать заданный ряд. Гармонический ряд расходится, поэтому и наш ряд будет расходиться. Нам осталось лишь показать это формально с помощью признаков сравнения.

Решение с помощью первого признака сравнения

Неформальными рассуждениями, проведенными выше, мы пришли к выводу, что наш ряд расходится. Для этого случая применяется первый пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $v_n≤ \frac{4n^3+2n+9}{n^2(3n+5)^2}$, при этом ряд $\sum\limits_{n=1}^{\infty}v_n$ расходится. Тогда и заданный нам ряд будет расходиться.

Станем уменьшать дробь $\frac{4n^3+2n+9}{n^2(3n+5)^2}$. Наша цель: привести данную дробь к виду $\frac{1}{n}$.

Чтобы уменьшить некую дробь, есть два пути: уменьшить числитель или увеличить знаменатель. Так как $n≥ 1$, то $2n+9 > 0$. Поэтому если мы отбросим в числителе $2n+9$, то уменьшим числитель, тем самым уменьшив рассматриваемую дробь:

$$ \frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{4n^3}{n^2(3n+5)^2} $$

Поработаем с знаменателем. Если мы его увеличим, то дробь уменьшится. Так как $n≥ 1$, то $3n+5≤ 3n+5n=8n$. Итак, если мы вместо $3n+5$ запишем $8n$, то знаменатель увеличится:

$$ \frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{4n^3}{n^2(3n+5)^2}≥ \frac{4n^3}{n^2(8n)^2}=\frac{4n^3}{64n^4}=\frac{1}{16}\cdot\frac{1}{n}. $$

Дальнейшие рассуждения стандартны: так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, то будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{1}{16}\cdot\frac{1}{n}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{1}{16}\cdot\frac{1}{n}\right)$ расходится и $\frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{1}{16}\cdot\frac{1}{n}$, то согласно (пункт №1) ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ будет расходиться.

Решение с помощью второго признака сравнения

Ранее мы уже выяснили, что сравнивать заданный ряд нужно с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$, используя . Данный признак работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{4n^3+2n+9}{n^2(3n+5)^2}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n\left(4n^3+2n+9\right)}{n^2(3n+5)^2}=\lim_{n\to\infty}\frac{4n^3+2n+9}{n(3n+5)^2}=\left|\frac{\infty}{\infty}\right|=\\ =\lim_{n\to\infty}\frac{\frac{4n^3}{n^3}+\frac{2n}{n^3}+\frac{9}{n^3}}{\frac{n(3n+5)^2}{n^3}}=\lim_{n\to\infty}\frac{4+\frac{2}{n^2}+\frac{9}{n^3}}{\left(3+\frac{5}{n}\right)^2}=\frac{4+0+0}{(3+0)^2}=\frac{4}{9}. $$

Так как $0<\frac{4}{9}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, то одновременно с ним будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$.

Ответ : ряд расходится.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ на сходимость.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$. Сразу обращаем внимание, что $u_n > 0$, т.е. наш ряд положительный. Точно так же, как и в предыдущих примерах, можно проверить выполнение необходимого условия сходимости , однако эта проверка лишь покажет, что $\lim_{n\to\infty}u_n=0$. Т.е. ничего определённого про сходимость ряда сказать нельзя и нужно использовать иные критерии.

Для проверки сходимости заданного ряда с помощью признаков сравнения для начала составим ряд, с которым станем сравнивать. Попробуем отбросить "лишние" элементы числителя и знаменателя точно так же, как это было сделано в примерах №1 и №2. Останется у нас такая дробь:

$$\frac{5n^2}{\sqrt{7n^{10}}}=\frac{5}{\sqrt{7}}\cdot\frac{n^2}{n^{\frac{10}{3}}}=\frac{5}{\sqrt{7}}\cdot\frac{1}{n^{\frac{10}{3}-2}}= \frac{5}{\sqrt{7}}\cdot\frac{1}{n^{\frac{4}{3}}}.$$

Вот с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ мы и станем сравнивать заданный ряд. Так как $\frac{4}{3} > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится. Следовательно, и наш ряд будет сходиться, нам осталось лишь показать это формально с помощью признаков сравнения.

Решение с помощью первого признака сравнения

Неформальными рассуждениями выше мы пришли к выводу, что наш ряд сходится. Для этого случая применяется второй пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}≤ v_n$ и ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится. Тогда и заданный нам ряд будет сходиться.

Станем увеличивать дробь $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$. Наша цель: привести данную дробь к виду $\frac{1}{n^{\frac{4}{3}}}$.

Чтобы увеличить данную дробь, для начала увеличим числитель. Если мы отбросим число (-3), то числитель станет больше. А значит и сама дробь увеличится:

< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}} $$

Поработаем с знаменателем. Если мы его уменьшим, то дробь увеличится. Так как $n≥ 1$, то $7n^{10}-4≥ 7n^{10}-4n^{10}=3n^{10}$. Итак, если мы вместо $7n^{10}-4$ запишем $3n^{10}$, то знаменатель уменьшится, а дробь увеличится:

$$ \frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}}≤ \frac{5n^2}{\sqrt{3n^{10}+2n^3}} $$

Теперь сделаем так: выкинем из знаменателя слагаемое $2n^3$. Тем самым мы уменьшим знаменатель, а саму дробь увеличим:

$$ \frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}}≤ \frac{5n^2}{\sqrt{3n^{10}+2n^3}} < \frac{5n^2}{\sqrt{3n^{10}}}= \frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится, то будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}\right)$ сходится и $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}<\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}$, то согласно (пункт №2) ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ будет сходиться.

Решение с помощью второго признака сравнения

Мы уже выяснили, что сравнивать заданный ряд нужно с сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$, используя . Данный признак работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}}{\frac{1}{n^{\frac{4}{3}}}}=\lim_{n\to\infty}\frac{5n^{\frac{10}{3}}-3n^{\frac{4}{3}}}{\sqrt{7n^{10}+2n^3-4}}=\left|\frac{\infty}{\infty}\right|=\left|\text{делим числитель и знаменатель на }n^{\frac{10}{3}}\right|=\\ =\lim_{n\to\infty}\frac{\frac{5n^{\frac{10}{3}}}{n^{\frac{10}{3}}}-\frac{3n^{\frac{4}{3}}}{n^{\frac{10}{3}}}}{\sqrt{\frac{7n^{10}}{n^{10}}+\frac{2n^3}{n^{10}}-\frac{4}{n^{10}}}}=\lim_{n\to\infty}\frac{5-\frac{3}{n^2}}{\sqrt{7+\frac{2}{n^7}-\frac{4}{n^{10}}}}= \frac{5-0}{\sqrt{7+0-0}}=\frac{5}{\sqrt{7}}. $$

Для вычисления предела был использован метод, изложенный в теме "Пределы с иррациональностями" . Так как $0<\frac{5}{\sqrt{7}}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится, то одновременно с ним будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$.

Ответ : ряд сходится.

Пример №4

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\left(\sqrt{2n+3}-\sqrt{2n-1}\right)$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\sqrt{2n+3}-\sqrt{2n-1}$. Здесь сразу можно заметить, что так как $\sqrt{2n+3}> \sqrt{2n-1}$, то $u_n > 0$, т.е. наш ряд положительный. Можно при желании проверить выполнение необходимого условия сходимости, однако эта проверка ничего не даст (предел $\lim_{n\to\infty}u_n$ вычисляется по аналогии с примером №8 на этой странице), так как $\lim_{n\to\infty}u_n=0$. Перейдём к применению признаков сравнения.

Перед тем, как применять некие признаки сравнения, выражение общего члена ряда лучше немного преобразовать. Тут поможет домножение на сопряжённое выражение, т.е. на $\sqrt{2n+3}+\sqrt{2n-1}$. Естественно, что если мы домножаем на некое выражение, то на него же обязаны и разделить. При упрощении нам поможет формула $(a-b)(a+b)=a^2-b^2$. Итак:

$$ u_n=\sqrt{2n+3}-\sqrt{2n-1}=\frac{\left(\sqrt{2n+3}-\sqrt{2n-1}\right)\cdot \left(\sqrt{2n+3}+\sqrt{2n-1}\right)}{\sqrt{2n+3}+\sqrt{2n-1}}=\\ =\frac{\left(\sqrt{2n+3}\right)^2-\left(\sqrt{2n-1}\right)^2}{\sqrt{2n+3}+\sqrt{2n-1}}=\frac{2n+3-(2n-1)}{\sqrt{2n+3}+\sqrt{2n-1}}= \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}. $$

Теперь наш ряд имеет вид $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$. Применяя рассуждения, аналогичные проведённым в предыдущих примерах, получим, что сравнивать наш ряд надо с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$. Ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{1}{2}}}$ расходится, так как степень $\frac{1}{2}≤ 1$. Значит, будет расходиться и наш ряд, осталось лишь показать это формально.

Решение с помощью первого признака сравнения

Неформальными рассуждениями выше мы пришли к выводу, что наш ряд расходится. Станем уменьшать дробь $\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$. Так как $\sqrt{2n+3}> \sqrt{2n-1}$, то записав выражение $\sqrt{2n+3}$ вместо $\sqrt{2n-1}$ мы увеличим знаменатель, тем самым уменьшив дробь:

$$ \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} > \frac{4}{\sqrt{2n+3}+\sqrt{2n+3}}=\frac{4}{2\sqrt{2n+3}}=\frac{2}{\sqrt{2n+3}}. $$

Увеличим знаменатель ещё раз. Так как $2n+3 < 2n+7n=9n$, то заменяя выражение в знаменателе на $\sqrt{9n}$ мы увеличим знаменатель, тем самым уменьшив дробь:

$$ \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} >\frac{2}{\sqrt{2n+3}} > \frac{2}{\sqrt{9n}}=\frac{2}{3}\cdot\frac{1}{\sqrt{n}}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится, то будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{2}{3}\cdot\frac{1}{\sqrt{n}}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{2}{3}\cdot\frac{1}{\sqrt{n}}\right)$ расходится и $\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} >\frac{2}{3}\cdot\frac{1}{\sqrt{n}}$, то согласно (пункт №1) ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ будет расходиться.

Решение с помощью второго признака сравнения

Мы уже выяснили, что сравнивать заданный ряд нужно с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$, используя . Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}}{\frac{1}{\sqrt{n}}}=\lim_{n\to\infty}\frac{4\sqrt{n}}{\sqrt{2n+3}+\sqrt{2n-1}}=\left|\frac{\infty}{\infty} \right|=\left|\text{делим числитель и знаменатель на }\sqrt{n}\right|=\\ =\lim_{n\to\infty}\frac{4}{\sqrt{2+\frac{3}{n}}+\sqrt{2-\frac{1}{n}}}=\frac{4}{\sqrt{2+0}+\sqrt{2-0}}=\frac{2}{\sqrt{2}}=\sqrt{2}. $$

Так как $0<\sqrt{2}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится, то одновременно с ним будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$.

Ответ : ряд расходится.

Продолжение темы исследования сходимости рядов с помощью признаков сравнения рассмотрим во второй и третьей частях.

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится
Понравилась статья? Поделитесь ей