Контакты

Чем отличается энтальпия от энтропии. Энтальпия

ЛЕКЦИЯ №8.

Закономерности протекания химических реакций

Введение в термодинамику. Понятие об энтропии, энтальпии, энергии Гиббса. Возможность протекания химических реакций. Энтальпийный и энтропийный факторы процессов.

Химическая термодинамика

Вопрос возможна ли в принципе та или иная самопроизвольная реакция в тех или иных условиях, рассматривает химическая термодинамика . Например, взрыв пороха (селитры, серы и угля) не возможен сам по себе. При обычных условиях реакция не идёт. Для её начала необходимо t°, либо удар.

Химическая термодинамика рассматривает переход системы из одного состояния в другое, полностью игнорируя механизм перехода. О том, как совершается переход исходных веществ в продукты реакции и как зависит скорость от условий реакции рассматривает химическая кинетика . Если термодинамически реакция запрещена, то бессмысленно рассматривать её скорость, эта реакция самопроизвольно не протекает.

Если же реакция термодинамически возможна, то скорость можно изменить, например, введя катализатор. Теории, законы, численные характеристики, необходимы для того, чтобы управлять реакциями: замедлить процессы коррозии металлов или составить композицию ракетного топлива и т.д.

Термодинамика – наука о превращениях одних видов энергии и работы в другие. Существуют 3 начала термодинамики.

Химической называется термодинамика рассматривающая превращение энергии и работы при химических реакциях. Для этого необходимо знать функцию состояния .

Функцией состояния называется такая переменная характеристика системы, которая не зависит от предыстории системы и изменение которой при переходе системы из одного состояния в другое не зависит от того, каким образом было произведено это изменение.

(Сизиф, гора,

ΔЕ камня на горе – функция состояния)

ΔЕ – потенциальная энергия

ΔЕ = mg(h 2 -h 1)

Чтобы можно было пользоваться функциями состояния, необходимо обозначить сами состояния.

Параметры состояния

Р- давление

V – объем

часть пространства, занимаемая системой.

ν – число молей

;
;

Т – температура

Для идеального газа,

Т = 273,16 К для тройной точки воды.

Т˚ - стандартная t˚

Т˚ = 25˚С = 298,16 К

Р˚ - стандартное Р

Р˚ = 1 атм = 760 мм рт.ст. = 101,3 кПа

Функции состояния

U – внутренняя энергия

Н – энтальпия

S – энтропия

G – энергия Гиббса

A и Q, т.е. работа и теплота – это две функции, которым посвящена термодинамика, но которые не являются функциями состояния.

Любая система, переход которой из одного состояния в другое рассматривает термодинамика, может иметь:

I постоянный объем (т.е. например, запаянная ампула), V – const.

Процессы, протекающие при постоянном объеме, называются изохорическими , (изохорными).

II постоянное давление . изобарические процессы (изобарные), P – const.

III постоянная . изотермические процессы, T – const.

Процессы, протекающие в системе в условиях, когда отсутствует обмен теплотой между системой и внешней средой, называются адиабатическими.

Теплота, полученная системой, считается положительной, а отданная системой во внешнюю среду – отрицательной. Теплота определяется числом Дж (кДж).

Первое начало термодинамики. Энтальпия.

I закон термодинамики – закон сохранения и превращения энергии.

изменение внутренней энергии системы равно разности между количеством теплоты, полученной системой из среды, и количеством работы, произведенной системой над средой.

ΔU – в химической реакции – это изменение внутренней энергии системы в результате превращения определенного числа молей исходных веществ в определенное число молей продуктов реакции.

(разность между энергиями конечных и начальных состояний).

тогда

Если реакция изохорная, то V-const и
(т.е. количеству теплоты, полученное или отданное системой).

Если же реакция изобарная, то она проходит при постоянном внешнем давлении:

тогда

Большинство химических реакций проходит в изобарных условиях, т.е. необходимо определить Q P и работу расширения (сжатия).

Для упрощения ситуации в термодинамике принята новая функция – энтальпия Н.

Изменение энтальпии в реакции будет равно:

Учитывая уравнение (1), получим

а поскольку реакция идет в изобарных условиях, то P = const
.

, но мы знаем, что
, подставим:

, тогда

, т.е. разность между тепловыми эффектами одной и той же реакции, измеренными при постоянном давлении и постоянном объеме, равна работе расширения. Таким образом, изменение энтальпии однозначно связано с количеством теплоты, полученной или отданной системой при изобарном переходе, а изменение энтальпии ΔН обычно принимают за меру теплового эффекта химической реакции.

Тепло костра, прокаливание известняка, фотосинтез растений, электролиз – это примеры обмена различными формами энергии.

Тепловым эффектом химической реакции называется изменение энергии при изобарном переходе определенного числа молей исходных веществ в соответствующее число молей продуктов реакции (в Дж или кДж).

Измеряется изменением энтальпии при переходе системы из состояния исходных веществ в продукты реакции. При этом сохраняется термин экзо и эндотермической реакции. Измеряется калориметром. Тепловые эффекты реакций, протекающих в прямом и обратном направлении, равны по величине и противоположны по знаку.

Н 2 + Cl 2 = 2HCl ΔН = – 184 кДж

2HCl = H 2 + Cl 2 ΔН = + 184 кДж

Фундаментальный закон термохимии был сформулирован Гессом в 1840г.

Т
епловой эффект реакции зависит только от состояния исходных и конечных веществ и не зависит от числа промежуточных стадий.

Для получения 1 моля СО 2 необходимо 1 моль С (тв) и 1 моль О 2 (г).

Суммируя стадии и энтальпии всех стадий находим, что:

Этот процесс называется циклом. Для того, чтобы рассчитать тепловой эффект реакции необходимо знать энтальпии разложения исходных веществ и энтальпии образования продуктов реакции из простых веществ. Но они равны по величине и различны по знаку, поэтому достаточно знать одну энтальпию. Т.к. энтальпия зависит от его состояния и от условий, то все состояния и условия отнесены к одинаковым, которые называются стандартными.

t˚ = 25˚С, Р = 101,3 кПа

t˚ эффект химической реакции равен разности суммы теплот образования продуктов реакции и суммы теплот образования исходных веществ.

Переход из стандартного состояния в любое другое сопровождается увеличением энтальпии, т.е. эндотермическим тепловым эффектом.

простых веществ равны нулю.

Называется стандартной энтальпией (теплотой образования).

(˚) – означает, что все вещества находятся в стандартных состояниях.


Энтальпией образования сложного вещества из простых веществ называется тепловой эффект реакции образования данного вещества из простых веществ в стандартных состояниях, отнесенный к 1 молю получающегося вещества. . (f – formation – образование).

Энтропия

Энтропия (S) пропорциональна логарифму термодинамической вероятности (W) состояния системы.

H – постоянная Больцмана

Энтропия – есть мера неупорядоченности системы. Энтпропия вводится как функция состояния, изменение которой определяется отношением количества теплоты, полученное или отданное системой при t – T.

Если система получает некоторое количество теплоты при постоянной t˚, то вся теплота идёт на увеличение беспорядочного, хаотического движения частиц, т.е. увеличения энтропии.

II Второе начало термодинамики

Второе начало термодинамики утверждает, что в изолированной системе самопроизвольно могут протекать только такие процессы, которые ведут к увеличению энтропии (неупорядоченная система).

Испарение эфира с руки протекает самопроизвольно с увеличением энтропии, но теплота для такого перехода отнимается от руки, т.е. процесс идёт эндотермически.

III Третье начало термодинамики

Энтропия идеального кристалла при абсолютном нуле равна нулю. Это третье начало термодинамики.

S˚ 298 – стандартная энтропия, Дж/(к·моль).

Если ΔН велико, то ΔS мало. Но это не всегда так. Гиббс ввел в термодинамику новую функцию состояния – энергию Гиббса – G .

G = H – TS или ΔG = ΔH – TΔS

В любой закрытой системе при постоянных Р и Т возможен такой самопроизвольный процесс, который ведет к уменьшению энергии Гиббса ΔG и энтальпия . ... Гиббса . Энтальпийный и энтропийный факторы , их влияние на протекание реакций при низких и высоких температурах. 18. Оценка возможности и условий протекания реакций ...

  • Данное пособие может быть использовано для самостоятельной работы студентами нехимических специальностей

    Документ

    Преобладающего фактора . Энергия Гиббса служит критерием самопроизвольного протекания химической реакции при изобарно – изотермических процессах . Химическая реакция принципиально возможна , если энергия Гиббса уменьшается...

  • Методические указания Учебные занятия по курсу “Теоретические основы химии” состоят из лекций, семинаров, лабораторных работ, курсовой работы и домашней работы

    Методические указания

    ... Понятие об энтропии , абсолютная энтропия веществ (S°т) и энтропии процессов (S°т).Энергия Гиббса как мера химического сродства. Изменение энергии Гиббса в различных процессах , энтропийный и энтальпийный факторы . Вычисление G°298 и S °298 процессов ...

  • Методические указания

    ... Н реакции . Понятие об энтропии . Абсолютная энтропия и её зависимость от строения вещества. Изменение энтропии в различных процессах . Энергия Гиббса , ее связь с энтропией и энтальпией . Энтальпийный и энтропийный факторы процесса ...

  • Программа вступительного экзамена в магистратуру по направлению 050100 Естественнонаучное образование

    Программа

    ... процессах . Энергетика и направленность химических процессов Химическая термодинамика . Основные понятия термодинамики : система, процесс , параметр, состояние. Функции состояния системы: внутренняя энергия и энтальпия ...

  • Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

    Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии , сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании , не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

    Количество энтальпии

    Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

    Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения полезного действия процесса.

    Энтальпию часто определяют как полную энергию вещества , так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту.
    H = U + pV

    Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

    Энтальпия , тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

    Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда ДH = 0

    Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

    · Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс ).

    Молярная теплоёмкость при постоянном давлении обозначается как C p . В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера C p = C v + R .

    Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной :

    · для одноатомных газов, то есть около 20.8 Дж/(моль·К);

    · для двухатомных газов, то есть около 29.1 Дж/(моль·К);

    · для многоатомных газов C p = 4R , то есть около 33.3 Дж/(моль·К).

    где теплоёмкость при постоянном давлении обозначается как C p

    В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

    Если реакцию проводят при стандартных условиях при Т = 298 К = 25 ?С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ДH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

    Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений ):

    Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

    где ДC p (T 1 , T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ДC p (T f , T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода. Стандартная энтальпия сгорания

    Стандартная энтальпия сгорания - ДH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

    Стандартная энтальпия растворения - ДH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ДH реш > 0, а гидратация ионов - экзотермический, ДH гидр < 0. В зависимости от соотношения значений ДH реш и ДH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

    ДH раствKOH о = ДH реш о + ДH гидрК +о + ДH гидрOH -о = ?59 КДж/моль

    Под энтальпией гидратации - ДH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

    Теплоемкость с P , c V [Дж. моль -1. К -1 , кал. моль -1. К -1 ]

    Истинная молярная теплоемкость:

    при V = const c V =; P = const c P =.

    Средняя молярная теплоемкость численно равна теплоте, которую надо сообщить одному молю вещества, чтобы нагреть его на 1 К: .

    Теплоемкости при постоянном давлении или объеме связаны равенством

    для идеального газа ;

    для крист. вещества (, T - термические коэффициенты).

    Температурная зависимость теплоемкости многих одноатомных кристаллов при T < q D /12 описывается законом кубов Дебая (q D - характеристическая температура Дебая) c V = aT 3 , при T c V 3R. В области средних температур применяют различные степенные полиномы (см., напр., закон Кирхгофа).

    Правило Дюлонга и Пти : атомная теплоемкость при V = const для любого простого кристаллического вещества приблизительно равна с V 3R (т.е. 25 Дж. моль -1. К -1).

    Правило аддитивности: (с P,i - теплоемкость составляющих соединение структурных фрагментов, напр., атомов или групп атомов).

    Теплота [Дж. моль -1 , кал. моль -1 ] Q - форма передачи энергия от более нагретого тела к менее нагретому, не связанная с переносом вещества и совершением работы.

    Теплота химической реакции при постоянном объеме или давлении (т.е. тепловой эффект химической реакции) не зависит от пути проведения процесса, а определяется только начальным и конечным состоянием системы (закон Гесса):

    = U, = H.

    Разность тепловых эффектов при P = const (Q P) и V = const (Q V) равна работе, которая совершается системой (V>0) или над системой (V<0) за счет изменения ее объема при завершении изобарно-изотермической реакции:

    - = n RT.

    Стандартная теплота реакции может быть рассчитана через стандартные теплоты образования () или сгорания () веществ:

    где n i,j - стехиометрические коэффициенты в уравнении химической реакции.

    Для идеальных газов при T, P = const: r H = r U + n RT.

    Зависимость теплового эффекта химической реакции от температуры определяется законом Кирхгофа .

    = = , = = ,

    т.е. влияние температуры на тепловой эффект реакции обусловлено разностью теплоемкостей продуктов реакции и исходных веществ c учетом стехиометрических коэффициентов:

    При P = const:

    энтальпия термодинамический энтропия давление

    Если температурная зависимость c P аппроксимирована уравнением

    = a + b . T + c . , то

    H(T 2 ) = H(T 1 )+ а . .

    Теплота адсорбции - отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции. Адсорбция - всегда экзотермический процесс (Q > 0). При постоянной адсорбции (Г, q = const):

    Величина Q является косвенным критерием определения типа адсорбции: если Q < 30 40 кДж/моль) - физическая адсорбция, Q > 40 кДж/моль - хемосорбция.

    Теплота образования - изобарный тепловой эффект химической реакции образования данного химического соединения из простых веществ, отнесенный к одному молю этого соединения. При этом считают, что простые вещества реагируют в той модификации и том агрегатном состоянии, которые устойчивы при данной температуре и давлении 1 атм.

    Теплота сгорания (т.с.) - тепловой эффект сгорания 1 моля вещества и охлаждения продуктов реакции до первоначальной температуры смеси. Т.С., если не оговорено особо, отвечает сгоранию С до СО 2 , H 2 до H 2 O (ж.), для остальных веществ в каждом случае указывают продукты их окисления.

    Теплота фазового перехода - теплота, поглощаемая (выделяемая) в результате равновесного перехода вещества из одной фазы в другую (см. переход фазовый).

    Термодинамические переменные (т. п.) - величины, количественно выражающие термодинамические свойства. Т.П. разделяют на независимые переменные (измеряемые в опыте) и функции. Прим.: давление, температура, элементный химический состав - независимые т. п., энтропия, энергия - функции. Набором значений независимых переменных задается термодинамическое состояние системы (см. также ур-ние состояния). Переменные, которые фиксированы условиями существования системы, и, следовательно, не могут изменяться в пределах рассматриваемой задачи, называют термодинамическими параметрами.

    Экстенсивные - т. п., пропорциональные количеству вещества или массе системы. Прим .: объем, энтропия, внутренняя энергия, энтальпия, энергии Гиббса и Гельмгольца, заряд, площадь поверхности.

    Интенсивные - т. п., не зависящие от количества вещества или массы системы. Прим. : давление, термодинамическая температура, концентрации, мольные и удельные термодинамические величины, электрический потенциал, поверхностное натяжение. Экстенсивные т. п. складываются, интенсивные - выравниваются.

    Энтропия

    Энтропия (от греч. ?нфспрЯб - поворот, превращение) - понятие, впервые введенное в термодинамике для определения меры необратимого рассеивания энергии. Термин широко применяется и в других областях знания: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы, в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

    Энтропия - функция состояния системы, равная в равновесном процессе кол-ву теплоты сообщенной системе или отведенной из системы.

    Энтропия - связь между макро и микро состояниями, единственная функция в физике, которая показывает направленность процессов. Функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.

    Энтальпия

    Энтальпимя, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня с грузом весом Р = p S, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной. Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

    H = E = U + pV Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состоянияДH = H2 ? H1Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс).

    Внутреняя энергия (U ) вещества складывается из кинетической и потенциальной энергии всех частиц вещества, кроме кинетической и потенциальной энергии вещества в целом. Внутреняя энергия зависит от природы вещества, его массы, давления, температуры. При химических реакциях разница величин внутренней знергии веществ до и после реакции выливается в тепловой эффект химической реакции. Различают тепловой эффект химической реакции, осуществляемой при постоянном объеме Q v (изохорный тепловой эффект), и тепловой эффект реакции при постоянном давлении Q p (изобарный тепловой эффект).

    Тепловой эффект при постоянном давлении, взятый с противоположным знаком называют изменением энтальпии реакции (ΔH = -Q p).

    Энтальпия связана с внутренней энергией H = U + pv, где p – давление, а v – объем.

    Энтропия (S) – мера беспорядка в системе. Энтропия газа больше, чем энтропия жидкости и твердого тела. Энтропия это логарифм вероятности существования системы (Больцман 1896г): S = R ln W, где R – универсальная газовая постоянная, а W – вероятность существования системы (число микросостояний, которыми может быть осуществлено данное макросостояние). Энтропия измеряется в Дж/мольּK и энтропийных единицах (1э.е. =1Дж/мольּK).

    Потенциал Гиббса (G) или изобарно-изотермический потенциал. Эта функция состояния системы получила название движущей силы химической реакции. Потенциал Гиббса связан с энтальпией и энтропией соотношением:

    ∆G = ∆H – T ∆S , где T температура в K.

    6.4 Законы термохимии. Термохимические расчеты.

    Закон Гесса (Герман Иванович Гесс 1840): тепловой эффект химической реакции не зависит от пути по которому идет процесс, а зависит от начального и конечного состояния системы.

    Закон Лавуазье-Лапласа : тепловой эффект прямой реакции равен тепловому эффекту обратной с противоположным знаком.

    Закон Гесса и следствия из него используют для расчетов изменения энтальпии, энтропии, потенциала Гиббса при химических реакциях:

    ∆H = ∑∆H 0 298 (прод.) - ∑∆H 0 298 (исход.)

    ∆S = ∑S 0 298 (прод.) - ∑S 0 298 (исход.)

    ∆G = ∑∆G 0 298 (прод.) - ∑∆G 0 298 (исход.)

    Формулировка следствия из закона Гесса для расчета изменения энтальпии реакции: иэменения энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрии.

    ∆H 0 298 – стандартная энтальпия образования (количество теплоты, которое выделяется или поглощается при образовании 1 моля вещества из простых веществ при стандартных условиях). Стандартные условия: давление 101,3 кПа и температура 25 0 C.

    Принцип Бертло-Томсена : все самопроизвольно протекающие химические реакции идут с уменьшением энтальпии. Этот принцип работает при низких температурах. При высоких температурах могут протекать реакции с увеличением энтальпии.

    Более общим критерием возможности протекания процесса является потенциал Гиббса: ∆G < 0 - процесс возможен, ∆G > 0 - процесс невозможен, ∆G = 0, в системе равновесие (возможен прямой и обратный процесс).

    Понравилась статья? Поделитесь ей