Контакты

Частица материи в квантовой физике. Как квантовая физика меняет мир

Как вы помните из курса физики средней школы, вся материя состоит из молекул.

Если взять любой физический объект и делить его до тех пор, пока не станет невозможным разделить оставшуюся частицу снова, в конечном итоге мы получим наименьший элемент этого объекта, неделимую частицу.

Для большинства объектов это будет молекула, хотя для некоторых чистых веществ наименьшей неделимой частицей является атом.

Вещества, состоящие из одинаковых атомов, называются химическими элементами. Если атомы этих элементов соединить вместе, можно «создать» другие вещества. Воду, например, можно разложить только на молекулы, которые состоят из двух атомов водорода и одного атома кислорода. Если разложить воду на атомы, она перестанет быть водой и станет кислородом и водородом.

Молекулы и, в определенной степени, атомы ведут себя логично и «правильно» — в соответствии с правилами классической науки, науки XIX века и «здравого смысла».

Но ученые всегда стремились понять, из чего состоят сами атомы, вот тут-то и начинаются проблемы, и именно здесь расходятся пути логичной науки и возможностей нашего восприятия и воображения. Как только мы начинаем наблюдать поведение объектов меньших, чем атомы, начинают происходить странные вещи.

«Маленькие странности»

Когда исследователи начали экспериментировать с объектами, из которых состоят атомы, им пришлось искать совершенно новый физический подход. Они назвали новое направление квантовой физикой, потому что результаты их экспериментов не имели никакого сходства с тем, что ожидалось согласно законам физики, которую именуют классической. Квантовая физика достигла феноменальных успехов в предсказании поведения частиц и стала основой для многих современных технологий.

Слово «квант» происходит от латинского quantum — «сколько» и означает в физике неделимую порцию чего-либо. Кирпичики материи — это крошечные частицы вещества. Субатомные частицы обладают свойствами как твердых частиц, так и волн.

Одним из самых странных открытий квантовой физики является то, что эти частицы всегда находятся «неизвестно где». Невозможно абсолютно точно определить координаты и импульс элементарной частицы в пространстве в конкретный момент времени.

Это принцип неопределенности Гайзенберга — один из основных принципов квантовой механики. Может показаться, что все это полная бессмыслица, но тем не менее это так. И на этом странности не заканчиваются.

Частицы света — фотоны, попадая на преграду, в которой проделаны две близко расположенные вертикальные щели, делают то же самое — каждая частица проходит через обе щели одновременно.

Тот же эксперимент можно проделать со светом. Свет проходит через одну щель в преграде. На выходе он сталкивается со второй преградой, в которой проделаны две щели.

На выходе из каждого отверстия по другую сторону формируется новая волновая картина. Сразу две волны начинают интерферировать друг с другом.

За второй преградой устанавливается экран. Когда свет попадает на этот экран, появляется изображение из светлых и темных полос. Эти полосы называются интерференционными полосами. Они соответствуют областям, где световые волны складываются (конструктивная интерференция), и областям, где волны гасят друг друга (деструктивная интерференция).

В 1800 году английский ученый Томас Юнг использовал этот эксперимент, чтобы доказать, что свет не состоит из твердых частиц, а представляет собой волну, распространяющуюся в воздухе, подобно волне, пробегающей по поверхности воды. Но сразу же возник серьезный вопрос:

Каким образом свет распространяется в вакууме?

По своей природе волна не может не только распространяться, но и существовать в отсутствие какой-либо среды. Тем не менее свет и его разновидности, такие как тепло, могут проходить вакуум.

Чтобы объяснить, как солнечный свет и тепло преодолевают миллионы километров пустого пространства и достигают Земли, были выдвинуты предположения, что пространство заполняет какое-то еще неизвестное вещество — его назвали эфиром. Считалось, что именно это таинственное вещество служит переносной средой для волн в вакууме.

Затем были обнаружены еще некоторые свойства света, не вписывающиеся в волновую теорию. Особым вопросом стал фотоэлектрический эффект. Было установлено, что свет, падающий на твердый объект, как бы выбивает с его поверхности электроны.

В начале XX века природой света заинтересовался Альберт Эйнштейн и в 1905 году написал работу, которая впоследствии принесла ему Нобелевскую премию по физике.

Он объяснил фотоэлектрический эффект очень просто: выбивание электронов происходит за счет воздействия неких частиц света, — и назвал эти частицы фотонами. А частицы не нуждаются ни в какой среде (эфире) и могут свободно перемещаться в вакууме.

Теория Эйнштейна была впоследствии доказана экспериментальным путем: свет действительно состоит из частиц. Наука вскоре продвинулась до такой степени, что ученые смогли выделить одиночные фотоны и проводить с ними эксперименты.

Однако поведение света также носило и волновой характер. Казалось, свет представляет собой и твердые частицы материи, и волны одновременно. Что-то здесь было не так. Чтобы разобраться в этом парадоксе, ученым пришлось вновь повторять эксперимент с двумя щелями, используя самые современные на тот момент измерительные приборы и детекторы.

Было проделано несколько вариантов этого эксперимента, и результаты показали, что реальность гораздо более загадочна, чем мы можем себе представить.

Предположим, что на преграду, в которой проделаны две щели, попадает один фотон. Чтобы очутиться по ту сторону преграды, фотон должен пройти через одно из двух отверстий.

Чтобы зарегистрировать одну такую маленькую частицу света, понадобится сверхчувствительная фотопластинка, которая устанавливается по другую сторону от преграды.

Каждый фотон, достигая поверхности фотопластинки, отображается на ней в виде белого пятнышка. По мере того как тысячи, а затем миллионы фотонов достигают пластинки, начинает проявляться определенное изображение.

Логично предположить, что на пластине будет изображение двух белых круглых пятен напротив каждого отверстия. Но на самом деле мы снова получаем интерференционные полосы! Каждая частица проходит через одно отверстие, но в момент прохождения сквозь щель что-то будто взаимодействует с ней, формируя неожиданную интерференционную картину.

Физикам остается лишь один возможный вывод: фотон испускается как частица и достигает пластинки как частица, но в пути он будто проходит через оба отверстия. Затем он располагается на фотопластинке вместе с другими фотонами так, чтобы сформировалась идеальная картина из светлых и темных полос.

Остается загадкой, каким образом фотону удается одновременно пройти через оба отверстия и откуда он «знает», как после этого ему следует расположиться на фотопластинке?

Свет: и волна, и частица

Физик Ральф Байерлейн сделал попытку ответить на первую часть этого вопроса так: свет путешествует как волна, а затем распадается и приходит на поверхность как частица.

Но свет не имеет массы и, как ни странно, не имеет объема. Частицы света (или световые волны) всегда путешествуют со скоростью света и поэтому должны существовать вне времени и пространства. Для того чтобы находиться «в пространстве», объект должен иметь массу. У света она отсутствует.

Для того чтобы находиться «во времени», объект должен путешествовать во времени. Однако при скорости света время расширяется настолько, что фактически останавливается. Это означает, что свет существует вне времени.

Все еще усложняется, если вспомнить, что свет — это всего лишь часть электромагнитного спектра, видимая невооруженным глазом. Электромагнитное излучение не имеет физической оболочки, оно просто есть.

Свет — это странное явление. А вот атомы, какими бы «пустыми» они ни были, — в конечном счете твердые частицы, которым, в отличие от света, не присуще подобное раздвоение. Или присуще? Удивительно, но ученые уже выяснили, что электроны и атомы подобны свету в том, что иногда ведут себя как твердые частицы, а иногда — как нефизические волны.

В 1987 году японские ученые из исследовательских лабораторий Хитачи и университета Гакусюин пришли к выводу, что электроны обладают такой же двойственностью. Это сомнительное утверждение, ведь электроны невероятно малы и никто никогда не видел и не фотографировал их. А вот атомы — другое дело. Самые крупные можно сфотографировать, и понятно, что они твердые в прямом смысле этого слова.

Первый перелом во взглядах на реальность произошел в начале 1990-х годов, когда ученые из немецкого университета Констанца доказали, что атомы тоже путешествуют как волна, а взаимодействуют как частицы.

А в 1999 году было обнаружено, казалось бы, невозможное: Антон Цайлингер из Венского университета продемонстрировал, что бакиболлы — сферические полые молекулы, состоящие из 60 атомов углерода, — могут одновременно проходить через две параллельные щели.

Итак, что же все это значит?

Допустим, стул, на котором вы сейчас сидите, состоит не только из обширных областей пустого пространства. Его цельность зависит от того, выберут ли атомы состояние твердых частиц или нефизических волн. Что же заставляет их сделать этот выбор? Ответ прост, но от него берет оторопь.

Ваш разум — это и есть тот фактор, который преобразует атом из нефизической волны в твердую частицу материи посредством обработки нервных сигналов, поступающих от ваших ягодиц. Акт восприятия сознательного существа вызывает физическое существование материи!

Есть и еще тревожные сведения: недавние эксперименты показали, что так происходит не только с атомами, но и с молекулами. Атомы и молекулы — это основные кирпичики, из которых построено все, что мы воспринимаем. Даже вы сами состоите из триллионов этих частиц.

Но если они настолько странно себя ведут, почему происходит так, что мы воспринимаем твердые предметы, которые действуют в пределах законов классической физики? Каким чудом безумие одного человека стало коллективным здравомыслием? Согласно принятой среди современных физиков точке зрения, именно акт наблюдения заставляет частицы вести себя таким образом.

Копенгагенская интерпретация

Этот вывод известен как копенгагенская интерпретация — он назван так потому, что основатели квантовой теории проживали в датской столице. Группа исследователей под руководством великого физика Нильса Бора предположила, что, воспринимая эти частицы, мы заставляем их принимать решение о том, в каком месте они расположатся.

Прежде чем частицы окажутся под наблюдением, они размываются в то, что называется «волной вероятности» и за счет этого могут пребывать в нескольких местах одновременно. Когда происходит акт наблюдения, частицы вынуждены выбирать одно место из всех других потенциальных мест.

Согласно копенгагенской интерпретации, в отсутствие наблюдения частицы могут пройти через обе щели в преграде. Как только экспериментатор включает любое измерительное устройство, частица вынуждена проходить через одну щель.

Иначе говоря, когда макромир наблюдает эти частицы, они вынуждены менять свое квантовое поведение на «классическое» поведение макрокосмических масштабов.

Атомы вынуждены действовать «нормально», как только они объединяются в деревья, стулья или книги. Такой акт наблюдения принято называть коллапсом волновой функции, поскольку в момент наблюдения волна становится частицей. А в отсутствие наблюдения объект представляет собой и частицу, и волну одновременно. Это состояние называют суперпозицией.

В отсутствие наблюдения частицы остаются в волне вероятности и не имеют возможности выбирать то или другое местоположение. Наблюдатель разрушает волновую функцию, что приводит к появлению материи. Нет наблюдателя — нет материи.

Выходит, один из важнейших вопросов теперь — что же представляет собой «наблюдатель»? Должен ли он быть существом, обладающим сознанием, или вполне достаточно любого бездумного измерительного прибора? Некоторые из ученых придерживаются мнения, что для того, чтобы наблюдать, нужно воспринимать, а это требует наличия сознания. Тогда что происходит с объектами, которые нельзя наблюдать? К примеру, с камнем на Луне?

Для людей религиозных копенгагенская интерпретация не только не является проблемой, а напротив, согласуется с верой. Наблюдать все способен только Бог, и поэтому он сам гарантирует, что все вокруг существует.

Тем не менее многие ученые не приняли вывод, сделанный в Копенгагене, — для многих он оказался просто неприемлемым.

⚓ Ищи альтернативные точки зрения

WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 11 человек(а).

Квантовая физика (она же квантовая теория или квантовая механика) – это отдельное направление физики, которое занимается описанием поведения и взаимодействия материи и энергии на уровне элементарных частиц, фотонов и некоторых материалов при очень низких температурах. Квантовое поле определяется как «действие» (или в некоторых случаях угловой момент) частицы, что по размеру находится в пределах величины крошечной физической константы, которая называется постоянной Планка.

Шаги

постоянная Планка

    Начните с изучения физического понятия постоянной Планка. В квантовой механике, постоянная Планка – это квант действия, обозначается как h . Аналогично, для взаимодействующих элементарных частиц, квант момента импульса - это приведенная постоянная Планка (постоянная Планка поделенная на 2 π) обозначается как ħ и называется «h с чертой». Значение постоянной Планка чрезвычайно мало, она объединяет те моменты импульса и обозначения действий, что имеют более общую математическую концепцию. Название квантовая механика подразумевает, что некоторые физические величины, подобные моменту импульса могут меняться только дискретно , а не непрерывным (см. аналоговым) способом.

    • Например, момент импульса электрона, привязанного к атому или молекуле, квантуется и может принимать только значения кратные приведенной постоянной Планка. Это квантование увеличивает орбиталь электрона на серию целого первичного квантового числа. В отличие от этого, момент импульса несвязанных электронов, находящихся рядом, не квантуется. Постоянная Планка также применяется в квантовой теории света, где квантом света является фотон, и материя взаимодействует с энергией посредством перехода электронов между атомами или «квантового скачка» связанного электрона.
    • Единицы постоянной Планка также можно рассматривать как время момента энергии. Например, в предметной области физики элементарных частиц, виртуальные частицы представлены, как масса частиц, которые спонтанно возникают из вакуума на очень малом участке и играют роль в их взаимодействии. Предел жизни этих виртуальных частиц – это энергия (масса) каждой частицы. Квантовая механика имеет большую предметную область, но в каждой математической ее части присутствует постоянная Планка.
  1. Узнайте о тяжелых частицах. Тяжелые частицы проходят от классического к квантовому энергетическому переходу. Даже если свободный электрон, обладающий некоторыми квантовыми свойствами (таким как вращение), в качестве несвязанного электрона, приближается к атому и замедляется (возможно, из-за испускания им фотонов), он переходит от классического к квантовому поведению, так как его энергия опускается ниже энергии ионизации. Электрон связывается с атомом и его момент импульса по отношению к атомному ядру ограничивается тем квантовым значением орбитали, которую он может занять. Этот переход внезапен. Его можно сравнить с механической системой, которая изменяет свое состояние от нестабильного к стабильному, или ее поведение меняется с простого на хаотическое, или можно даже сравнить с ракетным кораблем, который замедляется и идет ниже скорости отрыва, и занимает орбиту вокруг какой-нибудь звезды или другого небесного объекта. В отличие от них, фотоны (которые невесомы) такой переход не осуществляют: они просто пересекают пространство без изменений до тех пор, пока не взаимодействуют с другими частицами и не исчезают. Если вы посмотрите в ночное небо, фотоны от некоторых звезд без изменений пролетают долгие световые годы, затем взаимодействуют с электроном в молекуле вашей сетчатки, испуская свою энергию, а затем исчезая.

Квантовая теория и строение материи

В. Гейзенберг

Понятие "материи" на протяжении истории человеческого мышления неоднократно претерпевало изменения. В различных философских системах его интерпретировали по-разному. Когда мы употребляем слово "материя", то надо иметь в виду, что различные значения, которые придавались понятию "материя", пока еще в большей или меньшей степени сохранились в современной науке.

Ранняя греческая философия от Фалеса до атомистов, искавшая единое начало в бесконечном изменении всех вещей, сформулировала понятие космической материи, мировой субстанции, претерпевающей все эти изменения, из которой все единичные вещи возникают и в которую они в конце концов снова превращаются. Эта материя частично идентифицировалась с некоторым определенным веществом -- водой, воздухом или огнем, -- частично же ей не приписывали никаких других качеств, кроме качеств материала, из которого сделаны все предметы.

Позднее понятие материи играло важную роль в философии Аристотеля -- в его идеях о связи формы и материи, формы и вещества. Все, что мы наблюдаем в мире явлений, представляет собой оформленную материю. Материя, следовательно, является реальностью не сама по себе, но представляет собой только возможность, "потенцию", она существует лишь благодаря форме 13. В явлениях природы "бытие", как называет его Аристотель, переходит из возможности в действительность, в актуально свершившееся, благодаря форме. Материя у Аристотеля представляет собой не какое-либо определенное вещество, как, например, воду или воздух, не является она также и чистым пространством; она оказывается в известной степени неопределенным телесным субстратом, который содержит в себе возможность перейти благодаря форме в актуально свершившееся, в действительность. В качестве типичного примера этого соотношения между материей и формой в философии Аристотеля приводится биологическое развитие, в котором материя преобразуется в живые организмы, а также создание человеком произведения искусства. Статуя потенциально содержится в мраморе уже до того, как ее высекает скульптор.

Только значительно позднее, начиная с философии Декарта, материю как нечто первичное стали противопоставлять духу. Имеются два дополняющих друг друга аспекта мира, материя и дух, или, как выражался Декарт, "res extensa" и "res cogitans". Поскольку новые методологические принципы естествознания, особенно механики, исключали сведение телесных явлений к духовным силам, то материя могла быть рассматриваема только как особая реальность, независимая от человеческого духа и от каких-либо сверхъестественных сил. Материя в этот период представляется уже сформировавшейся материей, и процесс формирования объясняется причинной цепью механических взаимодействий. Материя уже утеряла связь с "растительной душой" аристотелевской философии, и поэтому дуализм между материей и формой в это время уже не играет никакой роли. Это представление о материи внесло, пожалуй, наибольший вклад в то, что мы ныне понимаем под словом "материя".

Наконец, в естествознании XIX столетия важную роль играл другой дуализм, а именно дуализм между материей и силой, или, как тогда говорили, между силой и веществом. На материю могут воздействовать силы, и материя может вызывать появление сил. Материя, например, порождает силу тяготения, и эта сила в свою очередь воздействует на нее. Сила и вещество являются, следовательно, двумя ясно различимыми аспектами физического мира. Поскольку силы являются также формирующими силами, это различие снова приближается к аристотелевскому различению материи и формы. С другой стороны, именно в связи с новейшим развитием современной физики, это различие силы и вещества полностью исчезает, так как всякое силовое поле содержит энергию и в этом отношении представляет собой также часть материи. Каждому силовому полю соответствует определенный вид элементарных частиц. Частицы и силовые поля -- только две различные формы проявления одной и той же реальности.

Когда естествознание изучает проблему материи, ему следует прежде всего исследовать формы материи. Бесконечное многообразие и изменчивость форм материи должны стать непосредственным объектом исследования; усилия должны быть направлены на то, чтобы найти законы природы, единые принципы, которые могли бы служить направляющей нитью в этом бесконечном поле исследований. Поэтому точное естествознание и особенно физика уже давно концентрируют свои интересы на анализе строения материи и сил, которые это строение определяют.

Со времени Галилея основным методом естествознания является эксперимент. Этот метод сделал возможным перейти от общих исследований природы к специфическим исследованиям, выделить характеристические процессы в природе, на основе которых ее законы можно изучать более непосредственно, чем в общих исследованиях. То есть при изучении строения материи необходимо произвести над ней эксперименты. Необходимо поставить материю в необычные условия, чтобы изучить ее превращения в этих обстоятельствах, надеясь познать тем самым определенные фундаментальные черты материи, которые сохраняются при всех ее видимых изменениях.

Со времени формирования естествознания нового времени это было одной из важнейших целей химии, в которой довольно рано пришли к понятию химического элемента. Субстанция, которая не могла быть разложена или расщеплена далее какими угодно средствами, имевшимися в то время в распоряжении химиков: кипячением, сжиганием, растворением, смешиванием с другими веществами, была названа "элементом". Введение этого понятия было первым и исключительно важным шагом в понимании строения материи. Многообразие имеющихся в природе веществ было тем самым сведено по крайней мере к сравнительно малому числу более простых веществ, элементов, и благодаря этому среди различных явлений химии был установлен определенный порядок. Слово "атом" поэтому и было применено к мельчайшей единице материи, которая входит в состав химического элемента, и самая маленькая частица химического соединения могла быть наглядно представлена в виде маленькой группы различных атомов. Мельчайшей частицей элемента железа оказался, например, атом железа, и наименьшая частица воды, так называемая молекула воды, оказалась состоящей из атома кислорода и двух атомов водорода.

Следующим и почти столь же важным шагом было открытие сохранения массы в химических процессах. Если, например, сжигается элемент углерода и при этом образуется двуокись углерода, то масса двуокиси углерода равна сумме масс углерода и кислорода до того, как процесс начался. Это открытие придало понятию материи прежде всего количественный смысл. Независимо от химических свойств материя могла быть измерена ее массой.

В течение следующего периода, главным образом в XIX столетии, было открыто большое число новых химических элементов. В наше время их число перешагнуло за 100. Это число, однако, совершенно ясно говорит о том, что понятие химического элемента еще не привело нас к тому пункту, исходя из которого можно было бы понять единство материи. Предположение о том, что существует очень много качественно различных видов материи, между которыми нет никаких внутренних связей, не было удовлетворительным.

К началу XIX столетия были уже найдены свидетельства в пользу наличия взаимосвязи между различными химическими элементами. Эти свидетельства заключались в том факте, что атомные веса многих элементов казались целочисленно кратными некоторой наименьшей единице, которая приблизительно соответствует атомному весу водорода. Подобие химических свойств некоторых элементов также говорило в пользу существования этой взаимосвязи. Но только благодаря применению сил, которые во много раз сильнее, чем те, которые действуют в химических процессах, можно было действительно установить связь между различными элементами и подойти ближе к пониманию единства материи.

Внимание физиков было привлечено к этим силам в связи с открытием радиоактивного распада, осуществленного Беккерелем в 1896 году. В последовавших затем исследованиях Кюри, Резерфорда и других превращение элементов в радиоактивных процессах было показано со всей очевидностью. Альфа-частицы испускались в этих процессах в виде обломков атомов с энергией, которая приблизительно в миллион раз больше, чем энергия единичной частицы в химическом процессе. Следовательно, эти частицы могли быть теперь использованы в качестве нового инструмента для исследования внутреннего строения атома. Ядерная модель атома, предложенная Резерфордом в 1911 году, явилась результатом экспериментов по рассеянию альфа-частиц. Важнейшей чертой этой известной модели было разделение атома на две совершенно различные части -- атомное ядро и окружающие атомное ядро электронные оболочки. Атомное ядро занимает в центре только исключительно малую долю всего пространства, которое занято атомом, -- радиус ядра приблизительно в сто тысяч раз меньше радиуса всего атома; но оно все-таки содержит почти всю массу атома. Его положительный электрический заряд, являющийся целочисленно кратным так называемому элементарному заряду, определяет общее число окружающих ядро электронов, ибо атом как целое должен быть электрически нейтрален; он определяет тем самым и форму электронных траекторий.

Это различие между атомным ядром и электронной оболочкой сразу дало согласованное объяснение тому факту, что в химии именно химические элементы являются последними единицами материи и что для превращения элементов друг в друга необходимы очень большие силы. Химические связи между соседними атомами объясняются взаимодействием электронных оболочек, и энергии взаимодействия при этом сравнительно малы. Электрон, ускоренный в разрядной трубке потенциалом всего в несколько вольт, обладает достаточной энергией, чтобы "разрыхлить" электронные оболочки и вызвать испускание света или разрушить химическую связь в молекуле. Но химическое поведение атома, хотя в основе его и лежит поведение электронных оболочек, определяется электрическим зарядом атомного ядра. Если хотят изменить химические свойства, нужно изменить само атомное ядро, а это требует энергий, которые примерно в миллион раз больше, чем те, которые имеют место при химических процессах.

Но ядерная модель атома, рассматриваемого как система, в которой выполняются законы ньютоновской механики, не может объяснить стабильность атома. Как было установлено в одной из предыдущих глав, только применение к этой модели квантовой теории может объяснить тот факт, что, например, атом углерода, после того как он взаимодействовал с другими атомами или излучил квант света, по-прежнему остается в конечном счете атомом углерода, с той же самой электронной оболочкой, какую он имел ранее. Эту стабильность можно просто объяснить на основе тех самых черт квантовой теории, которые делают возможным объективное описание атома в пространстве и во времени.

Этим путем было, следовательно, создано первоначальное основание для понимания строения материи. Химические и другие свойства атомов можно было объяснить, применяя к электронным оболочкам математическую схему квантовой теории. Исходя из этого основания, далее можно было пытаться вести анализ строения материи в двух различных направлениях. Можно было или изучать взаимодействие атомов, их отношение к более крупным единицам, таким, как молекулы или кристаллы или биологические объекты, или же можно было пытаться, исследуя атомное ядро и его составные части, продвинуться до того пункта, в котором стало бы понятным единство материи. Физические исследования форсированно развивались в прошедшие десятилетия в обоих направлениях. Последующее изложение и будет посвящено выяснению роли квантовой теории в обеих этих областях.

Силы между соседними атомами являются в первую очередь электрическими силами -- речь идет о притяжении противоположных зарядов и об отталкивании между одноименными; электроны притягиваются атомным ядром и отталкиваются другими электронами. Но эти силы действуют здесь не по законам ньютоновской механики, а по законам квантовой механики.

Это ведет к двум различным типам связи между атомами. При одном типе связи электрон одного атома переходит к другому атому, -- например для того, чтобы заполнить еще не совсем заполненную электронную оболочку. В этом случае оба атома оказываются в конечном счете электрически заряженными и получают название "ионов"; поскольку их заряды в таком случае противоположны, они взаимно притягиваются. Химик говорит в этом случае о "полярной связи".

При втором типе связи электрон определенным образом, характерным только для квантовой теории, принадлежит обоим атомам. Если использовать картину электронных орбит, то можно приблизительно сказать, что электрон обращается вокруг обоих атомных ядер и значительную долю времени проводит как в одном, так и в другом атоме. Этот второй тип связи соответствует тому, что химик называет "валентной связью".

Эти два типа связи, которые могут существовать во всевозможных комбинациях, вызывают в конечном счете образование различных совокупностей атомов и оказываются в конце концов определяющими все сложные структуры, которые изучаются физикой и химией. Итак, химические соединения образуются благодаря тому, что из атомов различного рода возникают небольшие замкнутые группы, и каждая группа может быть названа молекулой химического соединения. При образовании кристаллов атомы располагаются в виде упорядоченных решеток. Металлы образуются тогда, когда атомы расположены так плотно, что внешние электроны покидают свои оболочки и могут проходить сквозь весь кусок металла. Магнетизм некоторых веществ, особенно некоторых металлов, возникает вследствие вращательного движения отдельных электронов в этом металле и т. д.

Во всех этих случаях дуализм между материей и силой еще может быть сохранен, так как ядра и электроны можно рассматривать как строительные кирпичи материи, которые удерживаются вместе с электромагнитными силами.

В то время как физика и химия (там, где они имеют отношение к строению материи) составляют единую науку, в биологии с ее более сложными структурами положение складывается несколько по-другому. Правда, несмотря на бросающуюся в глаза целостность живых организмов, резкое различие между живой и неживой материей, вероятно, проведено быть не может. Развитие биологии дало нам большое число примеров, из которых можно видеть, что специфически биологические функции могут выполняться особыми большими молекулами или группами, или цепями таких молекул. Эти примеры подчеркивают тенденцию в современной биологии объяснять биологические процессы как следствие законов физики и химии. Но род стабильности, который мы усматриваем в живых организмах, по своей природе несколько отличен от стабильности атома или кристалла. В биологии речь идет скорее о стабильности процесса или функции, чем о стабильности формы. Несомненно, квантово-механические законы играют в биологических процессах очень важную роль. Например, для понимания больших органических молекул и их разнообразных геометрических конфигураций существенны специфические квантово-механические силы, которые только несколько неточно могут быть описаны на основе понятия химической валентности. Опыты по биологическим мутациям, вызываемым излучением, показывают также как важность статистического характера квантово-механических законов, так и существование механизмов усиления. Тесная аналогия между процессами в нашей нервной системе и процессами, которые имеют место при функционировании современной электронной счетной машины, снова подчеркивает важность для живого организма отдельных элементарных процессов. Но все эти примеры все-таки не доказывают, что физика и химия, дополненные учением о развитии, сделают возможным полное описание живых организмов. Биологические процессы должны трактоваться естествоиспытателями-экспериментаторами с большей осторожностью, чем процессы физики и химии. Как пояснил Бор, вполне может оказаться, что описания живого организма, которое с точки зрения физика может быть названо полным, совсем не существует, потому что данное описание потребовало бы таких экспериментов, которые должны были бы прийти в слишком сильный конфликт с биологическими функциями организма. Бор описал эту ситуацию следующим образом: в биологии мы имеем дело скорее с реализацией возможностей в той части природы, к которой мы принадлежим, чем с результатами экспериментов, которые мы сами можем произвести. Ситуация дополнительности, в которой действенна эта формулировка, отражается как тенденция в методах современной биологии: с одной стороны, полностью использовать методы и результаты физики и химии и, с другой стороны, все же постоянно употреблять понятия, которые относятся к тем чертам органической природы, которые не содержатся в физике и химии, как, например, понятие самой жизни.

Пока мы провели, следовательно, анализ строения.материи в одном направлении -- от атома к более сложным структурам, состоящим из атомов: от атомной физики к физике твердого тела, к химии и, наконец, к биологии. Теперь мы должны повернуть в противоположном направлении и проследить линию исследований, направленную от внешних областей атома к внутренним областям, к атомному ядру и, наконец, к элементарным частицам. Только эта вторая линия приведет нас, быть может, к пониманию единства материи. Здесь не нужно бояться того, что характеристические структуры будут сами разрушены в опытах. Если поставлена задача проверить в опытах принципиальное единство материи, то мы можем подвергнуть материю действию самых сильных из возможных сил, воздействию самых предельных условий, чтобы увидеть, может ли,в конце концов материя быть превращена в какую-нибудь другую материю.

Первым шагом в этом направлении был экспериментальный анализ атомного ядра. В начальные периоды этих исследований, которые заполняют примерно первые три десятка лет нашего столетия, единственным инструментом для экспериментов над атомным ядром были альфа-частицы, испускаемые радиоактивными веществами. С помощью этих частиц Резерфорду удалось в 1919 году превратить друг в друга атомные ядра легких элементов. Он смог, например, ядро азота превратить в ядро кислорода, присоединяя к ядру азота альфа-частицу и в то же самое время выбивая из него протон. Это был первый пример процесса на расстояниях порядка радиусов атомных ядер, который напоминал химические процессы, но который вел к искусственному превращению элементов. Следующим решающим успехом было искусственное ускорение протонов в приборах высокого напряжения до энергий, достаточных для ядерных превращений. Для этой цели необходимы разности напряжений примерно в миллион вольт, и Кокрофту и Уолтону в их первом решающем эксперименте удалось превратить атомные ядра элемента лития в атомные ядра элемента гелия. Это открытие выявило для исследований совершенно новое поле, которое может быть названо ядерной физикой в собственном смысле слова и которое очень быстро привело к качественному пониманию строения атомного ядра.

На самом деле строение атомного ядра оказалось очень простым. Атомное ядро состоит всего из двух различных видов элементарных частиц. Одна из элементарных частиц -- протон, являющаяся одновременно ядром атома водорода. Другая была названа нейтроном, частица, обладающая примерно той же массой, что и протон, и, кроме того, электрически нейтральная. Каждое атомное ядро можно, таким образом, охарактеризовать общим числом протонов и нейтронов, из которых оно состоит. Ядро обычного атома углерода состоит из 6 протонов и 6 нейтронов. Но есть также и другие ядра атомов углерода, которые являются несколько более редкими -- они были названы изотопами первых -- и которые состоят из 6 протонов и 7 нейтронов и т. д. Так в конце концов пришли к описанию материи, в котором вместо многих различных химических элементов использовались только три основные единицы, три фундаментальных строительных кирпича -- протон, нейтрон и электрон. Вся материя состоит из атомов и построена поэтому в конечном счете из этих трех основных строительных кирпичей. Это еще, конечно, не означает единства материи, но несомненно означает важный шаг в направлении этого единства и, что было, пожалуй, еще важнее, означает существенное упрощение. Правда, впереди был еще длинный путь от знания этих основных строительных кирпичей атомного ядра к полному пониманию его строения. Здесь проблема была несколько отличной от соответствующей проблемы относительно внешней оболочки атома, решенной в середине двадцатых годов. В случае электронной оболочки силы между частицами были известны с большой точностью, но, кроме того, должны были быть найдены динамические законы, и они в конце концов были сформулированы в квантовой механике. В случае атомного ядра можно было вполне предположить, что динамическими законами являются в основном законы квантовой теории, но здесь были прежде всего неизвестны силы между частицами. Их необходимо было вывести из экспериментальных свойств атомных ядер. Эта проблема не может быть решена полностью еще до сих пор. Силы, вероятно, не имеют такого простого вида, как в случае электростатических сил между электронами во внешних оболочках, и поэтому математически вывести свойства атомных ядер из более сложных сил труднее, и, кроме того, прогрессу препятствует неточность экспериментов. Но качественные представления о структуре ядра приобрели вполне определенный вид.

В конце концов, в качестве последней важнейшей проблемы остается проблема единства материи. Являются ли эти элементарные частицы -- протон, нейтрон и электрон последними, неразложимыми строительными кирпичами материи, иными словами, "атомами" в смысле философии Демокрита, без каких-либо взаимных связей (отвлекаясь от действующих между ними сил), или же они являются только различными формами одного и того же вида материи? Далее, могут ли они превращаться друг в друга или даже в другие формы материи? Если решать эту проблему экспериментально, то для этого требуются силы и сконцентрированные на атомных частицах энергии, которые должны быть во много раз больше, чем те, которые были использованы для исследования атомного ядра. Так как запасы энергии в атомных ядрах недостаточно велики, чтобы обеспечить нам средства для проведения таких экспериментов, то физики должны или воспользоваться силами в космосе, то есть в пространстве между звездами, на поверхности звезд, или же они должны довериться умению инженеров.

На самом деле успехи были достигнуты на обоих путях. Прежде всего физики использовали так называемое космическое излучение. Электромагнитные поля на поверхности звезд, простирающиеся на гигантские пространства, при благоприятных условиях могут ускорить заряженные атомные частицы, электроны и атомные ядра, которые, как оказалось, вследствие своей большей инерции имеют больше возможностей более долгое время оставаться в ускоряющем поле, и когда они в конце концов уходят с поверхности звезды в пустое пространство, то иногда успевают пройти потенциальные поля во много миллиардов вольт. Дальнейшее ускорение при благоприятных условиях происходит еще в переменных магнитных полях между звездами. Во всяком случае, оказывается, что атомные ядра долгое время удерживаются переменными магнитными полями в пространстве Галактики, и в конце концов они, таким образом, заполняют пространство Галактики тем, что называют космическим излучением. Это излучение достигает Земли извне и, следовательно, состоит из всех возможных атомных ядер -- водорода, гелия и более тяжелых элементов, -- энергии которых изменяются примерно от сотен или тысяч миллионов электрон-вольт до величин, в миллион раз больших. Когда частицы этого высотного излучения вторгаются в верхние слои атмосферы Земли, они сталкиваются здесь с атомами азота или кислорода атмосферы или атомами какого-либо экспериментального устройства, которое подвергают воздействию космического излучения. Результаты воздействия могут быть затем исследованы.

Другая возможность состоит в конструировании очень больших ускорителей элементарных частиц. В качестве прототипа для них может считаться так называемый циклотрон, который был сконструирован в Калифорнии в начале тридцатых годов Лоуренсом. Основная идея конструкции этих установок состоит в том, что благодаря сильному магнитному полю заряженные атомные частицы принуждают многократно вращаться по кругу, так что они на этом круговом пути могут снова и снова ускориться электрическим полем. Установки, в которых могут быть достигнуты энергии во много сотен миллионов электрон-вольт, в настоящее время действуют во многих местах земного шара, главным образом в Великобритании. Благодаря сотрудничеству 12 европейских стран в Женеве строится очень большой ускоритель такого рода, который, как надеются, будет давать протоны энергией до 25 миллионов электрон-вольт. Эксперименты, проведенные с помощью космического излучения или очень больших ускорителей, выявили новые интересные черты материи. Кроме трех основных строительных кирпичей материи -- электрона, протона и нейтрона, -- были открыты новые элементарные частицы, которые порождаются в этих происходящих при высоких энергиях столкновениях и которые по истечении исключительно малых промежутков времени исчезают, превращаясь в другие элементарные частицы. Новые элементарные частицы имеют свойства, подобные свойствам старых, за исключением своей нестабильности. Даже самые стабильные среди новых элементарных частиц имеют продолжительность жизни только около миллионной доли секунды, а время жизни других -- еще в сотни или тысячи раз меньше. В настоящее время известно приблизительно 25 различных видов элементарных частиц. Самая "молодая" из них -- отрицательно заряженный протон, который называют антипротоном.

Эти результаты кажутся на первый взгляд опять уводящими в сторону от идей о единстве материи, так как число фундаментальных строительных кирпичей материи, по-видимому, снова увеличилось до количества, сравнимого с количеством различных химических элементов. Но это было бы неточным толкованием действительного положения вещей. Ведь эксперименты одновременно показали, что частицы возникают из других частиц и могут быть превращены в другие частицы, что они образуются просто из кинетической энергии таких частиц и могут снова исчезнуть, так что из них возникнут другие частицы. Стало быть, другими словами: эксперименты показали полную превращаемость материи. Все элементарные частицы в столкновениях достаточно большой энергии могут превратиться в другие частицы или могут быть просто созданы из кинетической энергии; и они могут превратиться в энергию, например в излучение. Следовательно, мы имеем здесь фактически окончательное доказательство единства материи. Все элементарные частицы "сделаны" из одной и той же субстанции, из одного и того же материала, который мы теперь можем назвать энергией или универсальной материей; они -- только различные формы, в которых может проявляться материя.

Если сравнить эту ситуацию с понятием материи и формы у Аристотеля, то можно сказать, что материю Аристотеля, которая в основном была "потенцией", то есть возможностью, следует сравнивать с нашим понятием энергии; когда элементарная частица рождается, энергия выявляет себя благодаря форме как материальная реальность.

Современная физика не может, естественно, удовлетвориться только качественным описанием фундаментальной структуры материи; она должна попытаться на основе тщательно проведенных экспериментов углубить анализ до математической формулировки законов природы, определяющих формы материи, а именно элементарные частицы и их силы. Четкое разграничение между материей и силой или силой и веществом в этой части физики больше проведено быть не может, так как любая элементарная частица не только сама порождает силы и сама испытывает воздействие сил, но и в то же самое время сама представляет в данном случае определенное силовое поле. Квантово-механический дуализм волн и частиц является причиной того, что одна и та же реальность проявляет себя и как материя, и как сила.

Все попытки найти математическое описание для законов природы в мире элементарных частиц до сих пор начинались с квантовой теории волновых полей. Теоретические исследования в этой области были предприняты в начале тридцатых годов. Но уже первые работы в этой области выявили очень серьезные трудности в области, где квантовую теорию пытались объединить со специальной теорией относительности. С первого взгляда кажется, будто две теории, квантовая и теория относительности, относятся к столь различным сторонам природы, что практически они никак не могут влиять друг на друга и что поэтому требования обеих теорий должны быть легко выполнимы в одном и том же формализме. Но более точное исследование показало, что обе эти теории вступают в определенном пункте в конфликт, в результате чего и проистекают все дальнейшие трудности.

Специальная теория относительности раскрыла структуру пространства и времени, которая оказалась несколько отличной от структуры, приписывавшейся им со времени создания ньютоновской механики. Наиболее характерная черта этой вновь открытой структуры -- существование максимальной скорости, которая не может быть превзойдена любым движущимся телом или распространяющимся сигналом, то есть скорости света. Как следствие этого два события, имеющие место в двух весьма удаленных друг от друга точках, не могут иметь никакой непосредственной причинной связи, если они происходят в такие моменты времени, когда световой сигнал, выходящий в момент первого события из этой точки, достигает другой только после момента свершения другого события и наоборот. В этом случае оба события можно назвать одновременными. Поскольку никакое воздействие любого рода не может передаться от одного процесса в один момент времени другому процессу в другой момент времени, оба процесса не могут быть связаны никаким физическим воздействием.

По этой причине действие на большие расстояния так, как оно выступает в случае сил тяготения в ньютоновской механике, оказалось несовместимым со специальной теорией относительности. Новая теория должна была заменить такое действие "близкодействием", то есть передачей силы из одной точки только непосредственно соседней точке. Естественным математическим выражением взаимодействий этого рода оказались дифференциальные уравнения для волн или полей, инвариантные относительно преобразования Лоренца. Такие дифференциальные уравнения исключают какое-либо прямое воздействие одновременных событий друг на друга.

Поэтому структура пространства и времени, выражаемая специальной теорией относительности, предельно резко отграничивает область одновременности, в которой не может быть передано никакое воздействие, от других областей, в которых непосредственное воздействие одного процесса на другой может иметь место.

С другой стороны, соотношение неопределенностей квантовой теории устанавливает жесткую границу точности, с которой могут быть одновременно измерены координаты и импульсы или моменты времени и энергии. Так как предельно резкая граница означает бесконечную точность фиксации положения в пространстве и во времени, то соответствующие импульсы и энергии должны быть полностью неопределенными, то есть с подавляющей вероятностью должны выступить на первый план процессы даже со сколь угодно большими импульсами и энергиями. Поэтому всякая теория, которая одновременно выполняет требования специальной теории относительности и квантовой теории, ведет, оказывается, к математическим противоречиям, а именно к расходимостям в области очень больших энергий и импульсов. Эти выводы не обязательно могут носить необходимый характер, так как всякий формализм рассмотренного здесь рода является ведь очень сложным, и возможно еще, что будут найдены математические средства, которые помогут устранить в этом пункте противоречие между теорией относительности и квантовой теорией. Но до сих пор все-таки все математические схемы, которые были исследованы, приводили в самом деле к таким расходимостям, то есть к математическим противоречиям, или же они оказывались недостаточными, чтобы удовлетворить всем требованиям обеих теорий. Кроме того, было очевидно, что трудности в самом деле проистекают из только что рассмотренного пункта.

Тот пункт, в котором сходящиеся математические схемы не удовлетворяют требованиям теории относительности или квантовой теории, оказался очень интересным уже сам по себе. Одна из таких схем вела, например, когда ее пытались интерпретировать с помощью реальных процессов в пространстве и времени, к некоторого рода обращению времени; она описывала процессы, в которых в определенной точке внезапно происходило рождение нескольких элементарных частиц, а энергия для этого процесса поступала только позднее благодаря каким-то другим процессам столкновения между элементарными частицами. Физики же на основании своих экспериментов убеждены, что процессы такого рода в природе не имеют места, по крайней мере тогда, когда оба процесса отделены друг от друга некоторым измеримым расстоянием в пространстве и во времени.

В другой теоретической схеме попытка устранить расходимости формализма делалась на основе математического процесса, который был назван "перенормировкой". Этот процесс заключается в том, что бесконечности формализма можно было передвинуть в такое место, где они не могут помешать получению строго определяемых соотношений между наблюдаемыми величинами. Действительно, эта схема уже привела до определенной степени к решающим успехам в квантовой электродинамике, так как она дает способ расчета некоторых очень интересных особенностей в спектре водорода, которые до этого были необъяснимы. Более точный анализ этой математической схемы сделал, однако, правдоподобным вывод о том, что те величины, которые в обычной квантовой теории должны быть истолкованы как вероятности, могут в данном случае при некоторых обстоятельствах, после того как процесс перенормировки проведен, стать отрицательными. Это исключало бы, разумеется, непротиворечивое истолкование формализма для описания материи, так как отрицательная вероятность -- бессмысленное понятие.

Тем самым мы уже пришли к проблемам, которые ныне стоят в центре дискуссий в современной физике. Решение будет получено когда-нибудь благодаря постоянно обогащающемуся экспериментальному материалу, который добывается во все более и более точных измерениях элементарных частиц, их порождения и уничтожения, сил, действующих между ними. Если искать возможные решения этих трудностей, то, может быть, следует вспомнить о том, что такие процессы с видимым обращением времени, обсужденные выше, нельзя исключить на основании экспериментальных данных в том случае, если они имеют место только внутри совсем малых пространственно-временных областей, внутри которых с нашим теперешним экспериментальным оборудованием детально проследить процессы еще невозможно. Разумеется, при теперешнем состоянии нашего знания мы едва ли готовы признать возможность таких процессов с обращением времени, если из этого и следует возможность на какой-то более поздней стадии развития физики наблюдать подобного рода процессы таким же образом, каким наблюдают обычные атомные процессы. Но здесь сравнение анализа квантовой теории и анализа теории относительности позволяет представить проблему в новом свете.

Теория относительности связана с универсальной постоянной природы -- со скоростью света. Эта постоянная имеет решающее значение для установления связи между пространством и временем и поэтому должна сама по себе содержаться во всяком законе природы, удовлетворяющем требованиям инвариантности относительно преобразований Лоренца. Наш обычный язык и понятия классической физики могут быть применены только к явлениям, для которых скорость света может рассматриваться практически бесконечно большой. Если мы в наших экспериментах в какой-либо форме приближаемся к скорости света, то мы должны быть подготовлены к появлению результатов, которые более не могут быть объяснены с помощью этих обыкновенных понятий.

Квантовая теория связана с другой универсальной постоянной природы -- с планковским квантом действия. Объективное описание процессов в пространстве и во времени оказывается возможным только тогда, когда мы имеем дело с предметами и процессами сравнительно больших масштабов, а именно тогда постоянную Планка можно рассматривать как практически бесконечно малую. Когда мы в наших экспериментах приближаемся к области, в которой планковский квант действия становится существенным, мы приходим ко всем тем трудностям с применением обычных понятий, которые были обсуждены в предыдущих главах этой книги.

Но должна быть еще третья универсальная постоянная природы. Это следует просто, как говорят физики, из соображений размерности. Универсальные постоянные определяют величины масштабов в природе, они дают нам характеристические величины, к которым можно свести все другие величины в природе. Для полного набора таких единиц необходимы, однако, три основные единицы. Проще всего заключить об этом можно из обычных соглашений о единицах, как, например, из использования физиками системы CQS (сантиметр -- грамм -- секунда). Единицы длины, единицы времени и единицы массы вместе достаточно, чтобы образовать полную систему. Необходимы по меньшей мере три основные единицы. Их можно было бы заменить также единицами длины, скорости и массы или единицами длины, скорости и энергии и т. д. Но три основные единицы необходимы во всяком случае. Скорость света и планковский квант действия дают нам, однако, только две из этих величин. Должна быть еще третья, и только теория, содержащая такую третью единицу, возможно, способна вести к определению масс и других свойств элементарных частиц. Если исходить из наших современных познаний об элементарных частицах, то, пожалуй, самым простым и самым приемлемым путем введения третьей универсальной постоянной является предположение о том, что существует универсальная длина порядка величины 10-13 см, длина, стало быть, сравнимая примерно с радиусами легких атомных ядер. Если из. этих трех единиц образовать выражение, имеющее размерность массы, то эта масса имеет порядок величины массы обычных элементарных частиц.

Если предположить, что законы природы действительно содержат такую третью универсальную постоянную размерности длины порядка величины 10-13 см, то тогда вполне возможно, что наши обычные представления могут быть применимы только к таким областям пространства и времени, которые велики по сравнению с этой универсальной постоянной длины. По мере приближения в своих экспериментах к областям пространства и времени, малым по сравнению с радиусами атомных ядер, мы должны быть готовы к тому, что будут наблюдаться процессы качественно нового характера. Явление обращения времени, о котором говорилось выше и пока что только как о возможности, выводимой из теоретических соображений, могло бы поэтому принадлежать этим мельчайшим пространственно-временным областям. Если это так, то, вероятно, его было бы нельзя наблюдать таким образом, что соответствующий процесс мог бы быть описан в классических понятиях. И все же в той мере, в какой такие процессы могут быть описаны классическими понятиями, они должны обнаруживать также и классический порядок следования во времени. Но пока о процессах в самых малых пространственно-временных областях -- или (что согласно соотношению неопределенностей приблизительно соответствует этому высказыванию) при самых больших передаваемых энергиях и импульсах -- известно слишком мало.

В попытках достичь на основе экспериментов над элементарными частицами большего знания о законах природы, определяющих строение материи и тем самым структуру элементарных частиц, особенно важную роль играют определенные свойства симметрии. Мы напомним о том, что в философии Платона самые маленькие частицы материи были абсолютно симметричными образованиями, а именно правильными телами -- кубом, октаэдром, икосаэдром, тетраэдром. В современной физике, правда, эти специальные группы симметрии, получающиеся из группы вращений в трехмерном пространстве, не стоят больше в центре внимания. То, что имеет место в естествознании нового времени, ни в коем случае не является пространственной формой, а представляет собой закон, стало быть, в определенной степени пространственно-временную форму, и поэтому применяемые в нашей физике симметрии должны всегда относиться к пространству и времени совместно. Но определенные типы симметрии, кажется, в действительности играют в теории элементарных частиц наиболее важную роль.

Мы познаем их эмпирически благодаря так называемым законам сохранения и благодаря системе квантовых чисел, с помощью которых можно упорядочить соответственно опыту события в мире элементарных частиц. Математически мы можем их выразить с помощью требования, чтобы основной закон природы для материи был инвариантным относительно определенных групп преобразований. Эти группы преобразований являются наиболее простым математическим выражением свойств симметрии. Они выступают в современной физике вместо тел Платона. Наиболее важные здесь кратко перечислены.

Группа так называемых преобразований Лоренца характеризует вскрытую специальной теорией относительности структуру пространства и времени.

Группа, исследованная Паули и Гюрши, соответствует по своей структуре группе трехмерных пространственных вращений -- она ей изоморфна, как говорят математики, -- и проявляет себя в появлении квантового числа, которое эмпирически было открыто у элементарных частиц уже двадцать пять лет назад и получило название "изоспин".

Две следующие группы, ведущие себя формально как группы вращений вокруг жесткой оси, приводят к законам сохранения для заряда, для числа барионов и для числа лептонов.

Наконец, законы природы должны быть инвариантны еще относительно определенных операций отражения, которые здесь нет нужды перечислять подробно. По этому вопросу особенно важными и плодотворными оказались исследования Ли и Янга, согласно идее которых величина, называемая четностью и для которой ранее предполагался справедливым закон сохранения, в действительности не сохраняется.

Все известные до сих пор свойства симметрии удается выразить с помощью простого уравнения. Причем под этим понимается, что это уравнение инвариантно относительно всех названных групп преобразований, и поэтому можно думать, что это уравнение уже правильно отображает законы природы для материи. Но решения этого вопроса еще нет, оно будет получено только со временем с помощью более точного математического анализа этого уравнения и с помощью сравнения с экспериментальным материалом, собираемым во все больших размерах.


Э. ч. м. превышает число элементов периодич. системы Менделеева. Э. ч. м. – существенно квантово-механич. объекты (см. Микрочастицы), их движении (совершающихся довольно часто со скоростями, близкими к скорости света) может быть только релятивистской, т.е. удовлетворяющей требованиям относительности теории. В 30–50-е гг. считалось, что общей теорией Э. ч. м. будет квантовой механики и теории относительности – релятивистская . Однако целый попыток в этом направлении натолкнулся на непреодолимые трудности. Поэтому в физике сложилось , что для создания общей теории Э. ч. м. надо пополнить принципы квантовой теории и теории относительности существенно новыми, характерными только для мира Э. ч. м. понятиями и закономерностями.

Из возникших в этой связи филос. проблем наибольшее привлекла природы пространства-времени на очень малых расстояниях. Многочисл. попытки непосредств. квантования пространств, отношений на уровне Э. ч. м. при логически последоват. проведении обнаружили свою несовместимость с требованиями теории относительности и данными эксперимента по рассеянию Э. ч. м. при очень высоких энергиях. Линденбаум и др. в 1966 доказали, что вплоть до расстояний 10 -17 см микромира имеет непрерывную, недискретную структуру. Различные модели дискретного пространства-времени рассмат-риваются в наст. время как одно из направлений исследования вопроса о реальной физич. структуре очень малых расстояний и промежутков времени. Применение математики в физике Э. ч. м. основано до сих пор на аксиоме Эвдокса – Архимеда, согласно к-рой из двух произвольно взятых отрезков меньший всегда можно отложить на большем число раз, после чего последний будет превзойден по длине. Эта , характеризующая топологию пространства, вызывает сомнения в мире Э. ч. м., особенно в связи с возможностью различных виртуальных превращений их друг в друга. В рамках т.н. абстрактной теории поля исследуется применения для построения общей теории Э. ч. м. математич. пространств самой общей топологич. природы, в т.ч. и неметрической (т.е. таких, в к-рых нельзя ввести нек-рую меру "удаленности" объектов друг от друга – аналог "расстояния" между ними).

Др. филос. проблем связана с выделением элементарного объекта, к-рый можно положить в основу теории Э. ч. м. На эту роль выдвигали и определенные эмпирически наблюдаемые (напр., протон, нейтрон и лямбда-гиперон в теории япон. Саката), и более косвенно связанные с опытом сущности (напр., нек-рое универсальное, само на себя действующее нелинейное спинорное Гейзенберга), и объекты гипотетич. природы (кварки Гелл-Мана и Цвейга или реджлионы Чью, Фраучи и их последователей). Многие из этих попыток непосредственно связаны с определенными филос. идеями. Так, Саката считает свою теорию основанной на идеях диалектич. материализма, Гейзенберг исходит из учения Платона о геометрически совершенных идеальных телах, Гелл-Ман связывает свою "восьмеричную симметрию" с восемью способами постижения истины Будды и с поисками новой формы атомизма, Чью, напротив, полагает идею атомизма устаревшей и предлагает руководствоваться идеей Лейбница о наилучшем из миров и идеей "демократии" – одинаковости статуса всех известных Э. ч. м.

Все предложенные до сих пор варианты общей теории Э. ч. м. представляют собой конкретные способы глубоко диалектич. противоречивости свойств Э. ч. м. как объектов науч. исследования: с одной стороны, очевидно удивительное постоянство масс, зарядов, спинов и др. характеристик Э. ч. м. данного вида; с др. стороны, взаимная превращаемость Э. ч. м. является по существу формой их бытия – благодаря наличию виртуальных процессов каждая из известных Э. ч. м. может превращаться почти в любую другую (плюс дополнит. корпускулы – для сохранения электрического, барионного и лептонного зарядов).

Ряд филос. проблем физики Э. ч. м. касается формирования новых понятий, с помощью к-рых удастся сформулировать новые движения Э. ч. м. как качественно своеобразных объектов. В последние годы в связи с открытием новых свойств симметрии Э. ч. м. складывается убеждение, что и законы квантовой теории, и законы теории относительности являются лишь нек-рым предельным случаем закономерностей будущей общей теории Э. ч. м. (напр., в пределе достаточно малых энергий – до одного миллиона электронвольт на корпускулу – и при ограничении объектами, имеющими триви-альную, метрич. топологию). Иными словами, к построению теории Э. ч. м. подходят с позиций соответствия принципа. Большие надежды возлагаются на интенсивно исследуемые свойства симметрии взаимодействий Э. ч. м. Очевидно, что лишь с т. зр. единой теории Э. ч. м. удастся объяснить и факт существования именно данного набора Э. ч. м., и наличие именно данных типов взаимодействий между ними, и совершенно загадочную в наст. время, но эмпирически очень ярко выступающую силы взаимодействия от степени его симметрии (уменьшение этой силы по мере уменьшения степени симметрии взаимодействия).

Лит.: Марков Μ. Α., О совр. форме атомизма (О понятии элементарной частицы), "ВФ", 1960; No 3, 4; Mapшак Р. и Судершан Э., Введение в физику Э. ч., пер. с англ., М., 1962; Филос. проблемы физики Э. ч., М., 1863; Гейзенберг В., Физика и , пер. с нем., М., 1963; Природа материи, "Успехи физич. наук", 1965; т. 86, вып. 4; Чью Дж., Аналитич. теория S-матрицы, пер. с англ., М., 1968.

И. Акчурин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Смотреть что такое "ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ МАТЕРИИ" в других словарях:

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые ч цы, из к рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго для наименования… … Физическая энциклопедия

    Большой Энциклопедический словарь

    Elementary particles мельчайшие частицы физической материи. Представления об элементарных частицах отражают ту ступень в познании строения материи, которая достигнута современной наукой. Вместе с античастицами открыто около 300 элементарных… … Термины атомной энергетики

    элементарные частицы - Мельчайшие частицы физической материи. Представления об элементарных частицах отражают ту ступень в познании строения материи, которая достигнута современной наукой. Вместе с античастицами открыто около 300 элементарных частиц. Термин… … Справочник технического переводчика

    Современная энциклопедия

    Элементарные частицы - ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ, общее название мельчайших частиц материи на следующем (после ядер) уровне строения материи (субъядерные частицы). К элементарным частицам относятся протон (p), нейтрон (n), электрон (e), фотон (g), нейтрино (n) и др. и их… … Иллюстрированный энциклопедический словарь

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. ч.» в современной физике находит выражение идея о первообразных сущностях,… … Большая советская энциклопедия

    Мельчайшие известные частицы физической материи. Представления об элементарных частицах отражают ту степень в познании строения материи, которая достигнута современной наукой. Характерная особенность элементарных частиц способность к взаимным… … Энциклопедический словарь

    В узком смысле частицы, к рые нельзя считать Состоящими из других частиц. В совр. физике термин Э. ч. используют в более широком смысле: так наз. мельчайшие частицы материи, подчиненные условию, что они не являются атомными ядрами и атомами… … Химическая энциклопедия

    Мельчайшие частицы физ. материи. Представления об Э. ч. отражают ту степень в познании строения материи, к рая достигнута совр. наукой. Характерная особенность Э. ч. способность к взаимным превращениям; это не позволяет рассматривать Э. ч. как… … Естествознание. Энциклопедический словарь

Книги

  • Эфирная теория строения материи Вселенной , Анатолий Бедрицкий. В книге "Эфирная теория строения материи Вселенной" определены истинные начальные элементарные частицы материи - маты, которые имеют абсолютную плотность и движутся хаотически во все стороны,…

Теория элементарных частиц материи

1. ВСЕЛЕННАЯ, ЭТО ФОРМА СУЩЕСТВОВАНИЯ МАТЕРИИ, ЭТО БЕСКОНЕЧНОЕ ПРОСТРАНСТВО ВО ВСЕХ ИЗМЕРЕНИЯХ, С МАТЕРИЕЙ, ОСУЩЕСТВЛЯЮЩЕЙ В НЁМ СВОЁ БЫТИЕ.

2. МАТЕРИЯ ЭТО ВСЁ ТО, ЧТО ИМЕЕТ СВОЮ ЭНЕРГЕТИЧЕСКУЮ ОБОЛОЧКУ.

3. ЭНЕРГИЯ ЭТО ХАРАКТЕРИСТИКА И МЕРА ДЕЙСТВИЯ МАТЕРИИ ИЛИ СПОСОБНОСТИ СОВЕРШИТЬ ДЕЙСТВИЕ.

4 .МАТЕРИАЛЬНОЕ ТЕЛО СОСТОИТ ИЗ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ МАТЕРИИ, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ МАТЕРИИ СОСТОЯТ ИЗ ЧЕТЫРЁХ ВИДОВ КВАНТОВ МАТЕРИИ. ФОТОН ЭТО ДВИЖУЩИЙСЯ ВНЕ МАТЕРИАЛЬНОГО ТЕЛА КВАНТ МАТЕРИИ.

5 . КВАНТ МАТЕРИИ СОСТОИТ ИЗ ЯДРА И ЭНЕРГЕТИЧЕСКОЙ ОБОЛОЧКИ.

6. ЭНЕРГЕТИЧЕСКАЯ ОБОЛОЧКА КВАНТА МАТЕРИИ СОСТОИТ ИЗ ЧЕТЫРЁХ ЭНЕРГЕТИЧЕСКИХ ПОЛЕЙ; КВАНТОВОГО (МЕХАНИЧЕСКОГО) (М), ЭЛЕКТРИЧЕСКОГО (C), МАГНИТНОГО (B) И ГРАВИТАЦИОННОГО (U).

7. ОСНОВУ КВАНТА МАТЕРИИ СОСТАВЛЯЕТ ЯДРО. ЯДРО ЭТО ТВЁРДАЯ НЕИЗМЕНЯЕМАЯ ЧАСТЬ ЭЛЕМЕНТАРНОЙ ЧАСТИЦЫ. ЯДРО ИМЕЕТ ПОЛОЖИТЕЛЬНЫЙ ИЛИ ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, СЕВЕРНЫЙ ИЛИ ЮЖНЫЙ МАГНИТНЫЙ ПОЛЮС. ЯДРО ПОКРЫВАЕТ ПЛАСТИЧНАЯ ОБОЛОЧКА (КВАНТОВОЕ ПОЛЕ).

8. ЭНЕРГЕТИЧЕСКОЕ ПОЛЕ КВАНТА, ЭТО ПРОСТРАНСТВО ВОКРУГ ЯДРА, В КОТОРОМ ПРОЯВЛЯЮТСЯ СИЛЫ ЭТОГО ПОЛЯ.

9. ЭНЕРГЕТИЧЕСКИЕ ПОЛЯ КВАНТА МАТЕРИИ ЯВЛЯЮТСЯ ПРИНАДЛЕЖНОСТЬЮ КВАНТА МАТЕРИИ, ЕГО СОСТАВНОЙ ЧАСТЬЮ

10. КВАНТЫ МАТЕРИИ, РАЗНЯТСЯ; ЗНАКОМ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА И ЗНКОМ СВОЕГО МАГНИТНОГО ПОЛЯ.

11. ЗОНА ДЕЙСТВИЯ ЭНЕРГЕТИЧЕСКИХ ПОЛЕЙ НАЧИНАЕТСЯ СРАЗУ ОТ ЯДРА.

12 КВАНТ МАТЕРИИ ОБЛАДАЕТ ВНУТРЕННЕЙ (МЕХАНИЧЕСКОЙ) ЭНЕРГИЕЙ (М). СИЛЫ ВНУТРЕННЕЙ ЭНЕРГИИ КВАНТА ПОЯВЛЯЕТСЯ ПРИ ДЕФОРМАЦИИ (СЖАТИИ) ОБОЛОЧКИ ЕЁ ЯДРА М = k ΔV. ВНУТРЕННЯЯ ЭНЕРГИЯ ЭЛЕМЕНТАРНОЙ ЧАСТИЦЫ МАТЕРИИ, ЭТО ПОТЕНЦИАЛ ЕЁ КИНЕТИЧЕСКОЙ ЭНЕРГИИ.

13. ОБОЛОЧКА ЯДРА КВАНТА МАТЕРИИ, ЕГО КВАНТОВОЕ ПОЛЕ. ОПРЕДЕЛЯЕТ ИНДИВИДУАЛЬНОСТЬ ЭЛЕМЕНТАРНОЙ ЧАСТИЦЫ МАТЕРИИ. ЭТО ЩИТ ЯДРА КВАНТА МАТЕРИИ. ПРИ ДЕФОРМАЦИИ (СЖАТИИ ОБОЛОЧКИ) У НЕЁ ПРОЯВЛЯЮТСЯ ДИГРАВИТАЦИОННЫЕ, ДИМАГНИТНЫЕ И ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА. ОБЪЕДИНЯЯСЬ МЕЖДУ СОБОЙ ГРАВИТАЦИОННЫМИ, МАГНИТНЫМИ И ЭЛЕКТРИЧЕСКИМИ ПОЛЯМИ, КВАНТЫ МАТЕРИИ ОСТАЮТСЯ ИНДИВИДУУМАМИ. ПРИ СБЛИЖЕНИИ КВАНТОВ МАТЕРИИ, ОБОЛОЧКА ЯДРА ВСТАЁТ ПРЕГРАДОЙ НА ПУТИ ИХ СОЕДИНЕНИЯ И, ТЕМ САМЫМ, СПАСАЕТ КВАНТ ОТ УНИЧТОЖЕНИЯ. ЧЕМ БОЛЬШЕ ЯДРА ПРИБЛИЖАЮТСЯ ДРУГ К ДРУГУ, ТЕМ НАПРЯЖЁННЕЕ ОБОЛОЧКА, ТЕМ БОЛЕЕ УСИЛИВАЮТСЯ ЕЁ ДИЭЛЕКТРИЧЕСКИЕ И ДИГРАВИТАЦИОННЫЕ КАЧЕСТВА. ПРИ МАКСИМАЛЬНОЙ ДЕФОРМАЦИИ (СЖАТИИ) ОБОЛОЧКИ ДИЭЛЕКТРИЧЕСКИЕ И ДИГРАВИТАЦИОННЫЕ КАЧЕСТВА НАСТОЛЬКО ВОЗРАСТАЮТ, ЧТО СИЛОВЫЕ ЛИНИИ, НИ МАГНИТНОГО, НИ ЭЛЕКТРИЧЕСКОГО, НИ ГРАВИТАЦИОННОГО ПОЛЯ, НЕ ПРОХОДЯТ СКВОЗЬ ОБОЛОЧКУ ЯДРА. КВАНТ МАТЕРИИ В ТАКОМ СОСТОЯНИИ НЕ ПРОЯВЛЯЕТ НИ ЭЛЕКТРИЧЕСКИХ, НИ МАГНИТНЫХ, НИ ГРАВИТАЦИОННЫХ КАЧЕСТВ, ОН ПРЕВРАЩАЕТСЯ В КВАНТИНО. ПРИ ИЗЛУЧЕНИИ ИЗ МАТЕРИАЛЬНОГО ТЕЛА, КВАНТИНО ПРЕВРАЩАЮТСЯ В ФОТОНЫ. С ТЕЧЕНИЕМ ВРЕМЕНИ, БЛАГОДАРЯ ИЗМЕНЕНИЮ СОСТОЯНИЯ ОБОЛОЧКИ ЯДРА, В КВАНТАХ ВОЗРОЖДАЮТСЯ ВСЕ ЭНЕРГЕТИЧЕСКИЕ ПОЛЯ.

14. СРАЗУ ЖЕ ЗА ЯДРОМ, В ЕГО ОБОЛОЧКЕ И ДАЛЬШЕ, РАСПОЛАГАЕТСЯ ЗОНА ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЗА ЯДРОМ ЖЕ НАЧИНАЕТ СВОЁ ДЕЙСТВИЕ МАГНИТНОЕ И ГРАВИТАЦИОННОЕ ПОЛЕ. СИЛОВЫЕ ЛИНИИ ГРАВИТАЦИОННОГО ПОЛЯ ПРОХОДЯТ СКВОЗЬ ОБОЛОЧКУ, СКВОЗЬ ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ И ПРОСТИРАЮТСЯ ДАЛЬШЕ.

15. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ И МАГНИТНОЕ ПОЛЕ, ЭТО КОРОТКОДЕЙСТВУЮЩИЕ ПОЛЯ, ИХ ДЕЙСТВИЕ ПРОЯВЛЯЕТСЯ В СЛУЧАЯХ ТЕСНОГО СБЛИЖЕНИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И СОЕДИНЕНИИ ИХ ГРАВИТАЦИОННЫХ ПОЛЕЙ. СИЛЫ ЭЛЕКТРИЧЕСКОГО И МАГНИТНОГО ПОЛЯ ПРИТЯГИВАЮТ РАЗНООИМЁННЫЕ ЗАРЯДЫ И ОТТАЛКИВАЮТ ОДНОНОИМЁННЫЕ…. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ, ЭТО ПОЛЯ ОБРАЗОВАНИЯ ВЕЩЕСТВА.

16. ГРАВИТАЦИОННОЕ ПОЛЕ САМОЕ СИЛЬНОЕ И САМОЕ ДАЛЬНОДЕЙСТВУЮЩЕЕ. ЭТО ПОЛЕ ОБЪЕДИНЕНИЯ МАТЕРИИ. СИЛОВЫЕ ЛИНИИ ГРАВИТАЦИОННОГО ПОЛЯ НАПРАВЛЕНЫ К ЯДРУ КВАНТА.

17. ПОЛНАЯ ЭНЕРГИЯ КВАТА МАТЕРИИ (ФОТОНА) ВЫЧИСЛЯЕТСЯ ПО ФОРМУЛЕ Е кв =fU о + fC о + fB о +К+М; Е кв =fU о + fC о +fB о +К+ķΔV. Здесь f- коэффициент сжатия кванта равный V/V 0. V 0 это объём кванта в свободном состоянии, V объём кванта в сжатом состоянии, k- коэффициент упругости оболочки кванта, ΔV разность свободного и сжатого объёмов, К – энергия массы (кинетическая энергия, энергия инерции.)М- механическая энергия.

18. ЭЛЕМЕНТАРНЫМИ ЧАСТИЦАМИ ВЕЩЕСТВЕННОЙ МАТЕРИИ ЯВЛЯЮТСЯ ЭЛЕКТРОНЫ И ПОЗИТРОНЫ. ЭЛЕКТРОНЫ И ПОЗИТРОНЫ СОСТОЯТ ИЗ ОДНОГО ВИДА КВАНТОВ. + )=8,3х10 21 ɣ + , (е - )=8,3х10 21 ɣ- . ПРОТОН СОСТОИТ УЖЕ ИЗ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ. ЭЛЕКТРОНЫ И ПОЗИТРОНЫ ЯВЛЯЮТСЯ ОСНОВОЙ АТОМОВ, АТОМЫ ЯВЛЯЮТСЯ ОСНОВОЙ ВЕЩЕСТВА.

19. МАТЕРИАЛЬНЫЕ ЧАСТИЦЫ В ПРОСТРАНСТВЕ РАСПОЛАГАЮТСЯ ПО СВОЕМУ ЗАКОНУ q= (1 – R/R 0 ) δМn/4π 2 R 3 ТАК, ЧТО ЛЮБОЕ МАТЕРИАЛЬНОЕ ТЕЛО ИМЕЕТ СВОИ ЭНЕРГЕТИЧЕСКИЕ ПОЛЯ (ЭНЕРГЕТИЧЕСКУЮ ОБОЛОЧКУ). ЭНЕРГЕТИЧЕСКАЯ ОБОЛОЧКА МАТЕРИАЛЬНОГО ТЕЛА ЭТО ЕЁ НЕОТЪЕМЛЕМАЯ СОСТАВЛЯЮЩАЯ, ЭТО САМА МАТЕРИЯ, НО В ДРУГОМ СОСТОЯНИИ. ЕСЛИ В МАТЕРИАЛЬНОМ ТЕЛЕ КВАНТЫ МАТЕРИИ НАХОДЯТСЯ В СОСТАВЕ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ, ТЕСНО СВЯЗАННЫЕ ЭЛЕКТРОМАГНИТНЫМИ И ГРАВИТАЦИОННЫМИ СВЯЗЯМИ С ДРУГИМИ ТАКИМИ ЖЕ КВАНТАМИ, ТО В ЭНЕРГЕТИЧЕСКОМ ПОЛЕ МАТЕРИАЛЬНОГО ТЕЛА ЭТИ ЧАСТИЦЫ В БОЛЕЕ СВОБОДНОМ СОСТОЯНИИ – СОТОЯНИИ КВАНТА ПОЛЯ, ПРИ КОТОРОМ ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ СВЯЗАНЫ ТОЛЬКО ГРАВИТАЦИОННО.

20. МАТЕРИЯ ОБЛАДАЕТ ВСЕМИ ВИДАМИ ЭНЕРГИИ; ЭНЕРГИИ БЕЗ МАТЕРИИ НЕТ. ЭНЕРГИЯ – НЕОТЪЕМЛЕМОЕ СВОЙСТВО ЭЛЕМЕНТАРНЫХ ЧАСТИЦ. КАЖДАЯ ЭЛЕМЕНТАРНАЯ ЧАСТИЦА, КАЖДЫЙ КВАНТ МАТЕРИИ ОБЛАДАЕТ ВСЕМИ ВИДАМИ ЭНЕРГИИ. Е кв = М+C+В+U+К

21. ЭНЕРГЕТИЧЕСКИЕ ПОЛЯ МАТЕРИИ СОЗДАЮТ НЕОБХОДИМЫЕ УСИЛИЯ ДЛЯ ДЕЙСТВИЯ И ВЗАИМОДЕЙСТВИЯ МАТЕРИИ.

22. МАССА ТЕЛА ЭТО КОЛИЧЕСТВО МАТЕРИИ В НЁМ СОДЕРЖАЩЕЙСЯ, НО ЭТО И МЕРА ЕГО ЭНЕРГИИ.

23. ВОЛНА ИЗЛУЧЕНИЯ ЭТО ОБЪЕДИНЁННЫЕ СВОИМИ ПОЛЯМИ, СОЗДАВШИЕ ОБЩЕЕ ПОЛЕ, ФОТОНЫ.

24. ИЗНАЧАЛЬНО КАЖДОЙ ЧАСТОТЕ ИЗЛУЧЕНИЯ СООТВЕТСТВУЕТ СВОЯ ЭНЕРГИЯ ФОТОНОВ. УДЕЛЬНАЯ ПЛОТНОСТЬ ФОТОНОВ В ВОЛНЕ ИЗЛУЧЕНИЯ ПРОПОРЦИОНАЛЬНА ЧАСТОТЕ ИЗЛУЧЕНИЯ. ЧАСТОТА ИЗЛУЧЕНИЯ ПРЯМО ПРОПОРЦИОНАЛЬНА ПЛОТНОСТИ ИЗЛУЧАЮЩЕЙ МАТЕРИИ. СКОРОСТЬ ДВИЖЕНИЯ ФОТОНОВ МЕНЯЕТСЯ В ЗАВИСИМОСТИ ОТ КОЛИЧЕСТВА В НИХ ВНУТРЕННЕЙ ЭНЕРГИИ.

25. ДЛИНА ВОЛНЫ ИЗЛУЧЕНИЯ ОБРАТНО ПРОПОРЦИОНАЛЬНА ТЕМПУ УСКОРЕНИЯ ФОТОНОВ.

26. КВАНТЫ МАТЕРИИ ЖИВУТ ВСЕГДА (ВРЕМЯ ЖИЗНИ НЕ ИМЕЕТ ГРАНИЦ).

27. ВХОДЯ В РАЗЛИЧНЫЕ СОЕДИНЕНИЯ ДРУГ С ДРУГОМ, ИЗМЕНЯЯСЬ, ПРОХОДЯ ПО КРУГУ ЧЕРЕЗ РАЗНЫЕ СТАДИИ; ГРАВИТОН → КВАНТ ПОЛЯ → КВАНТ МАТЕРИИ → ФОТОН → КВАНТ → КВАНТИНО → ФОТОН→ ГРАВИТОН… СОХРАНЯЯ ПРИ ЭТОМ СВОЮ ИНДИВИДУАЛЬНОСТЬ, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ МАТЕРИИ ОБРАЗУЮТ РАЗЛИЧНЫЕ КОСМИЧЕСКИЕ ТЕЛА. РАЗЛИЧНЫЕ СОЧЕТАНИЯ ЭТИХ ЧАСТИЦ ДАЮТ БЕСКОНЕЧНОЕ РАЗНООБРАЗИЕ, ВЕЛИКОЛЕПИЕ И МНОГОГРАННОСТЬ ВСЕЛЕННОЙ.

28. ЦАРСТВУЕТ ВО ВСЕЛЕННОЙ ЗАКОН СОХРАНЕНИЯ МАТЕРИИ. ОТКРЫТЫЙ МИХАИЛОМ ВАСИЛЬЕВИЧЕМ ЛОМОНОСОВЫМ… «МАТЕРИЯ НЕ ИСЧЕЗАЕТ И НЕ ПОЯВЛЯЕТСЯ ИЗ НИЧЕГО; КОЛИЧЕСТВО МАТЕРИИ ВО ВСЕЛЕННОЙ ЯВЛЯЕТСЯ ВЕЛИЧИНОЙ БЕСКОНЕЧНОЙ И ПОСТОЯННОЙ»

29. ГРАВИТАЦИЯ – ОСНОВНАЯ СИЛА, ДВИЖУЩАЯ МАТЕРИЕЙ. ОНА СОБИРАЕТ МАТЕРИЮ В КОСМИЧЕСКИЕ ТЕЛА, И ОНА ЖЕ РАЗБРАСЫВАЕТ МАТЕРИЮ ПО ВСЕЛЕННОЙ. Гравитационную энергию можно назвать «космической»

30. ВСЕЛЕННАЯ СУЩЕСТВУЕТ ВСЕГДА. ВСЕЛЕННАЯ НЕ РАСШИРЯЕТСЯ, НЕ СУЖАЕТСЯ, ОНА ПОСТОЯННО ИЗМЕНЯЕТСЯ. МАТЕРИЯ ВО ВСЕЛЕННОЙ ПРОХОДИТ ПО КРУГУ ПРЕОБРАЗОВАНИЙ, ПРЕВРАЩАЯСЬ, ВМЕСТЕ СО СВОЕЙ ЭНЕРГИЕЙ, ИЗ ОДНОГО ВИДА ОБРАЗОВАНИЙ В ДРУГОЙ; ТАКИМ ОБРАЗОМ ОСУЩЕСТВЛЯЕТСЯ КРУГОВОРОТ МАТЕРИИ И ЕЁ ЭНЕРГИИ ВО ВСЕЛЕННОЙ.

доказательства

Элементарные частицы материи

Общие сведения

Элементарные частицы в точном значении этого термина – первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии элементарные частицы в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мир а идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии. Со временем люди поняли, что открытые «элементарные частицы» вовсе не элементарные, но, не зная какие из всего этого скопа частиц являются элементарными, по-прежнему все частицы называли элементарными. Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц. Открытие элементарных частиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи. В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. Понятие “Элементарные частицы" сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19–20 вв. мельчайших носителей свойств вещества – молекул и атомов – и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих – атомов. Выявление в дальнейшем наличия составных слагающих атомов – электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями – элементарными частицами

История открытия «элементарных частиц»

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, то есть неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г), а также открытиями электронов (Дж. Томсон, 1897 г) и б-частиц (Э. Резерфорд, 1899 г). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (М. Планк А. Эйнштейн). В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны . В 1932 году Дж. Чедвик открыл нейтрон . Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными "кирпичиками" природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (м-мезонами). Затем в 1947–1950 годах были открыты пионы (то есть р-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций. В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, (позитрон), протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы "живут" гораздо меньшее время. Например, среднее время жизни м-мезона равно 2,2·10 -6 с, нейтрального р-мезона – 0,87·10 -16 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10 -10 с. Существует несколько десятков частиц со временем жизни, превосходящим 10 -17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10 -22 -10 -23 с. Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (то есть исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотонов достаточно большой энергией с ядром атома, с протоном или с другим, солидным для фотона препятствием. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, то есть, обе частицы исчезают, превращаясь в кванты излучения . Я замечу, что это происходит не всегда. Для аннигиляции необходимо создать определённые условия. Ведь не аннигилируют в протоне электроны и позитроны?! Не аннигилируют. Они прекрасно совмещаются, создав при этом самую устойчивую крупную частицу – протон. Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда.

Открытие странных частиц

Конец 40-х – начало 50-х гг. ХХвека ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных". Первые частицы этой группы К+ – и К- мезоны, L-, S+ -, S-, X- гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях – установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.

В 1947 г. Батлер и Рочестер в камере Вильсона наблюдали две частицы, названные V-частицами. Наблюдалось два трека, как бы образующие латинскую букву V. Образование двух треков свидетельствовало о том, что частицы нестабильны и распадаются на другие, более лёгкие. Одна из V-частиц была нейтральной и распадалась на две заряженные частицы с противоположными зарядами. (Позже она была отождествлена с нейтральным К-мезоном, который распадается на положительный и отрицательный пионы). Другая была заряженной и распадалась на заряженную частицу с меньшей массой и нейтральную частицу. (Позже она была отождествлена с заряженным К+-мезоном, который распадается на заряженный и нейтральный пионы). V-частицы допускают, на первый взгляд, и другую интерпретацию: их появление можно было бы истолковать не как распад частиц, а как процесс рассеяния. Действительно, процессы рассеяния заряженной частицы на ядре с образованием в конечном состоянии одной заряженной частицы, а также неупругого рассеяния нейтральной частицы на ядре с образованием двух заряженных частиц будут выглядеть в камере Вильсона так же, как и распад V-частиц. Но такая возможность легко исключалась на том основании, что процессы рассеивания более вероятны в более плотных средах. А V-события наблюдались не в свинце, который присутствовал в камере Вильсона, а непосредственно в самой камере, которая заполнена газом с меньшей плотностью (по сравнению с плотностью свинца). Заметим, что если экспериментальное открытие р-мезона было в каком-то смысле "ожидаемым" в связи с необходимостью объяснить природу нуклонных взаимодействий, то открытие V-частиц, как и открытие мюона, оказалось полной неожиданностью. Открытие V-частиц и определение их самых "элементарных" характеристик растянулось более чем на десятилетие. После первого наблюдения этих частиц в 1947 г. Рочестер и Батлер продолжали свои опыты ещё два года, но им не удалось наблюдать ни одной частицы. И только после того как аппаратуру подняли высоко в горы, были снова обнаружены V-частицы, а также и открыты новые частицы. Как выяснилось позднее, все эти наблюдения оказались наблюдениями различных распадов одной и той же частицы – К-мезона (заряженного или нейтрального). "Поведение" V-частиц при рождении и последующем распаде привело к тому, что их стали называть странными. Странные частицы в лаборатории впервые получены в 1954 г. Фаулером, Шаттом, Торндайком и Вайтмором, которые, используя пучок ионов от Брукхейвенского космотрона с начальной энергией 1,5 ГэВ, наблюдали реакции ассоциативного образования странных частиц. С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электрон-вольт (ГэВ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения – т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электрон-вольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона).

Резонансы

В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов". Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953 г. Оказалось, что резонансы составляют основная часть элементарных частиц. Сильное взаимодействие р-мезона и нуклона в состоянии с полным изотопическим спином 3/2 и моментом 3/2 приводит к появлению у нуклона возбуждённого состояния. Это состояние в течение очень короткого времени (порядка 10 -23 с) распадается на нуклон и р-мезон. Поскольку это состояние имеет вполне определённые квантовые числа, как и стабильные элементарные частицы, естественно было назвать его частицей. Чтобы подчеркнуть очень малое время жизни этого состояния, его и подобные короткоживущие состояния стали называть резонансными. Нуклонный резонанс, открытый Ферми в 1952 г., позже стали называть Д 3/2 3/2 – изобарой (чтобы выделить тот факт, что спин и изотопический спин Д-изобары равны 3/2). Так как время жизни резонансов незначительна, их нельзя наблюдать непосредственно, аналогично тому, как наблюдают "обычные" протон, р-мезоны и мюоны (по их следам в трековых приборах). Резонансы обнаруживают по характерному поведению сечений рассеивания частиц, а также изучая свойства продуктов их распада. Большинство известных элементарных частиц относится именно к группе резонансов. Открытие Д-резонанса имело важнейшее значение для физики элементарных частиц. Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия. Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у р-мезона (в этом случае говорят о мезонных резонансах). "Причина появления резонансов в сильных взаимодействиях непонятна – пишет Фейнман, – сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной".

Понравилась статья? Поделитесь ей