Контакты

Белки: Вторичная структура белков. Строение и функции белков Витки спирали вторичной структуры белка

Вторичная структура белка

Регулярные вторичные структуры

Регулярными называются вторичные структуры, образованные аминокислотными остатками с одинаковой конформацией главной цепи (углы φ и ψ), при разнообразии конформаций боковых групп. К регулярным вторичным структурам относят:

Нерегулярные вторичные структуры

Нерегулярными называют стандартные вторичные структуры, аминокислотные остатки которых имеют разную конформацию главной цепи (углы φ и ψ). К нерегулярным вторичным структурам относят:

Вторичная структура ДНК

Наиболее распространённой формой вторичной структуры ДНК является двойная спираль . Эта структура образуется из двух взаимно комплементарных антипараллельных полидезоксирибонуклеотидных цепей, закрученных относительно друг друга и общей оси в правую спираль . При этом азотистые основания обращены внутрь двойной спирали, а сахарофосфатный остов - наружу. Впервые эту структуру описали Джеймс Уотсон и Френсис Крик в 1953 году .

В формировании вторичной структуры ДНК участвуют следующие типы взаимодействий:

  • водородные связи между комплементарными основаниями (две между аденином и тимином, три - между гуанином и цитозином);
  • стэкинг -взаимодействия;
  • электростатические взаимодействия;

В зависимости от внешних условий параметры двойной спирали ДНК могут меняться, причём иногда существенно. Правоспиральные ДНК со случайной нуклеотидной последовательностью можно грубо разделить на два семейства - и В, главное отличие между которыми - конформация дезоксирибозы . К В-семейству также относятся С- и D-формы ДНК . Нативная ДНК в клетке находится в В-форме. Важнейшие характеристики А- и В-форм ДНК приведены в таблице .

Необычная форма ДНК была открыта в 1979 году . Рентгеноструктурный анализ кристаллов, образованных гескануклеотидами вида d(CGCGCG), показал что такие ДНК существуют в виде левой двойной спирали. Ход сахарофосфатного остова такой ДНК можно описать зигзагообразной линией, поэтому этот вид ДНК было решено назвать Z-формой. Было показано, что ДНК с определённой последовательностью нуклеотидов может переходить из обычной В-формы в Z-форму в растворе высокой ионной силы и в присутствии гидрофобного растворителя. Необычность Z-формы ДНК проявляется в том, что повторяющейся структурной единицей являются две пары нуклеотидов, а не одна, как во всех других формах ДНК. Параметры Z-ДНК приведены в таблице выше.

Вторичная структура РНК

Молекулы РНК представляют собой единичные полинуклеотидные цепи. Отдельные участки молекулы РНК могут соединяться и образовывать двойные спирали . По своей структуре спирали РНК похожи на А-форму ДНК. Однако часто спаривание оснований в таких спиралях бывает неполным, а иногда даже и не уотсон-криковским . В результате внутримолекулярного спаривания оснований формируются такие вторичные структуры, как стебель-петля («шпилька») и псевдоузел .

Вторичные структуры в мРНК служат для регуляции трансляции. Например, вставка в белки необычных аминокислот , селенометионина и пирролизина , зависит от «шпильки», расположенной в 3" нетранслируемой области. Псевдоузлы служат для программированного сдвига рамки считывания при трансляции .

См. также

  • Четвертичная структура

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Вторичная структура" в других словарях:

    вторичная структура - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN secondary structure …

    вторичная структура - antrinė sandara statusas T sritis fizika atitikmenys: angl. secondary structure vok. sekundäre Struktur, f; sekundäres Gefüge, n rus. вторичная структура, f pranc. structure secondaire, f … Fizikos terminų žodynas

    вторичная структура - микро и макроструктура, сформированная в результате термической обработки или пластической деформации металла или сплава; Смотри также: Структура ячеистая структура пластинчатая структура … Энциклопедический словарь по металлургии

    Вторичная структура конформационное расположение главной цепи (англ. backbone) макромолекулы (например, полипептидная цепь белка), независимо от конформации боковых цепей или отношения к другим сегментам . В описании вторичной… … Википедия

    вторичная структура белка - – пространственная конфигурация полипептидной цепи, формируемая в результате нековалентных взаимодействий между функциональными группами аминокислотных остатков (α и β структуры белков) …

    вторичная структура ДНК - – пространственная конфигурация молекулы ДНК, стабилизированная за счет водородных связей между комплементарными парами азотистых оснований (см. двойная спираль ДНК) … Краткий словарь биохимических терминов

    вторичная структура - палуба и модули на морской платформе - — Тематики нефтегазовая промышленность EN secondary structure … Справочник технического переводчика

    вторичная структура белка - Укладка полипептидной цепи в альфа спиральные участки и бета структурные образования (слои); в образовании В.с.б. участвуют водородные связи. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики… … Справочник технического переводчика

    Secondary structure of protein вторичная структура белка. Укладка полипептидной цепи в aльфа спиральные участки и бета структурные образования (слои); в образовании В.с.б. участвуют водородные связи. (

Белковая молекула любого типа в нативном состоянии обладает характерной для нее пространственной структурой, часто называемой конформацией. Для обозначения различных уровней структуры белка используют различные термины. Термин вторичная структура относится к вытянутой или спирально скрученной конформации полипептидных цепей. Термин третичная структура относится к способу укладки полипептидной цепи с образованием компактной, плотно упакованной структуры. Более общий термин конформация используют для одновременной характеристики вторичной и третичной структуры цепи, т.е. ее пространственной конфигурации. Термин четвертичная структура обозначает способ обьединения (расположения в пространстве) отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких подобных цепей.

Как правило, полипептидные цепи белков содержат от 100 до 300 аминокислотных остатков. Некоторые белки имеют более длинные цепи; к ним относятся сывороточный альбумин (около 550 остатков), миозин (около 1800 остатков),т.д.. Однако, если молекулярный вес какого-либо белка превышает 50000, есть все основания предполагать, что в молекуле такого белка содержится не менее двух полипептидных цепей.

Белки высокомолекулярные соединения со строго определенным химическим строением. Молекула белка состоит из одной или нескольких полипептидных цепей, образованных в результате поликонденсации аминокислот. При объединении аминокислот в белковую цепь образуются пептидные связи (-NH-СO-), на одном конце которых находится NH+3 группа, на другом COO- группа.

Рассмотрим структуру пептидной связи.

Особенностью связи является то, что 4 атома N,H,C,O располагаются в одной плоскости (обведенная область на рисунке). Известно, что вращение в молекуле вокруг ординарной связи приводит к появлению поворотных изомеров.

В белках вращение вокруг пептидной связи C-N затруднено (энергия активации 40 - 80 кДж/моль), т.к. эта связь имеет характер двойной связи и, кроме того, в пептидной группе имеет место водородная связь между группой С=O и атомом водорода группы N-H (с энергией активации 20-30 кДж/моль).

Поэтому белок можно рассматривать как цепь связанных друг с другом плоских пептидных звеньев. Вращение этих звеньев возможно лишь вокруг одинарных связей -углерода и аминокислот (см. рис).

Угол поворота вокруг связи С-С обозначается, вокруг cвязи С-N обозначается.

Нахождение наиболее устойчивой конформации белковой цепи требует минимизации ее полной энергии, включая энергию внутримолекулярных водородных связей. Полинг и Кюри установили 2 основных варианта структуры белковой цепи, которые называются -спираль и -форма.

-спираль

-форма

Рис. Ориентация водородных связей в структуре белка.

Спираль может быть правозакрученной (=132о, =123о) и левозакрученной (=228о, =237о). -формы бывают параллельные (=61о, =239о) и антипараллельные (=380о, =325о).

Кроме того, в белках встречаются участки, не образующие никакой регулярной структуры. Например, в гемоглобине 75% аминокислот образуют правозакрученные -спирали, а остальные участки цепи вообще никак не упорядочены. Упорядоченные участки часто называют кристаллической частью белковой молекулы, а неупорядоченные участки - аморфной формой белка.

Аморфные участки - депо строительного материала, который в случае необходимости используется для построения упорядоченных участков.

Синтезируемые в клетке полипептидные цепи, образованные в результате последовательного соединения аминокислотных остатков, представляют собой как бы полностью развернутые белковые молекулы. Для того, чтобы белок приобрел присущие ему функциональные свойства, цепь должна определенным образом свернуться в пространстве, сформировав функционально активную ("нативную") структуру. Несмотря на громадное число теоретически возможных для отдельной аминокислотной последовательности пространственных структур, сворачивание каждого белка приводит к образованию единственной нативной конформации. Таким образом, должен существовать код, определяющий взаимосвязь между аминокислотной последовательностью полипептидной цепи и типом пространственной структуры, которую она образует.

Оказалось, что процесс сворачивания белка in vivo не может считаться ни спонтанным, ни энергонезависимым. Благодаря существующей внутри клетки высоко координированной системе регуляции, полипептидная цепочка с самого момента своего "рождения", сходя с рибосомы, попадает под контроль факторов, которые, не изменяя специфического пути сворачивания (определяемого генетическим кодом), обеспечивают оптимальные условия для реализации быстрого и эффективного образования нативной пространственной структуры.

Способность того или иного участка полипептидной цепи образовывать элемент вторичной структуры (например, свернуться в a-спираль) зависит от характера аминокислотной последовательности данного отрезка цепи. Таким образом, число и расположение a-спиралей, b-тяжей и петель по ходу полипептидной цепи различно у разных белков и определяется генетическим кодом. Этим объясняется потенциальная способность любой полипептидной цепи к спонтанному сворачиванию уже в уникальную третичную структуру.


Рис. Схема пространственной структуры маленького белка (панкреатического ингибитора трипсина). Ход главной цепи изображен на фоне общего контура молекулы; выделены -спирали, -тяжи, резкий поворот цепи (t) и цистеиновые мостики (- - -). Так как белок сворачивается сам собой, то все это можно предсказать по одной лишь первичной структуре белка. Боковые группы здесь не показаны, но - в принципе - и их расположение в пространстве тоже можно предсказывать.

Согласно современным представлениям, процесс сворачивания имеет иерархическую природу: вначале очень быстро (за миллисекунды) формируются элементы вторичной структуры, служащие как бы "затравками" для образования более сложных архитектурных мотивов (стадия 1). Второй стадией (также происходящей очень быстро) является специфическая ассоциация некоторых элементов вторичной структуры с образованием супервторичной структуры (это могут быть сочетания нескольких a-спиралей, нескольких b-цепей либо смешанные ассоциаты данных элементов).

Формирование нативной структуры белков, состоящих из двух или более доменов, усложняется за счет дополнительной стадии - установления специфических контактов между доменами. Ситуация еще более усложняется, когда функционально активна олигомерная форма белка (то есть состоящая из нескольких полипептидных цепей, каждая из которых после сворачивания образует так называемую субъединицу). В этих случаях добавляется еще одна стадия - установление контактов между субъединицами.

Стадия превращения "расплавленной глобулы" в нативный белок является самой медленной, ограничивающей скорость всего процесса. Это обусловлено тем, что установление "оптимального набора" специфических взаимодействий, стабилизирующих нативную конформацию, связано с необходимостью структурных перестроек, происходящих относительно медленно. К их числу относится цис-транс-изомеризация пептидной связи, предшествующей остатку пролина. Поскольку транс-конформация более стабильна, она преобладает во вновь синтезированной полипептидной цепи. Однако для образования нативной структуры белка необходимо, чтобы около 7% связей, образованных остатками пролина, изомеризовались в цис-конформацию. Эта реакция, приводящая к повороту цепи на 1800 вокруг C-N связи, идет чрезвычайно медленно. In vivo она ускоряется благодаря действию специального фермента - пептидил-пролил-цис/транс-изомеразы.

Второй фермент, ускоряющий процесс сворачивания, катализирует образование и изомеризацию дисульфидных связей. Он локализуется в просвете эндоплазматического ретикулума и способствует сворачиванию секретируемых клетками белков, содержащих дисульфидные мостики (например, инсулин, рибонуклеаза, иммуноглобулины). Рис. 3 поясняет роль этого фермента в образовании дисульфидных связей, стабилизирующих нативную структуру белка, и в расщеплении "неправильных" S-S-мостиков.

Вторичная структура белка. Прежде всего у нас речь пойдет о регулярных вторичных структурах - об a-спиралях и о b-структуре.

Укладка a и b-структур в глобулу определяет третичную структуру белка. Эти вторичные структуры отличаются определенными, периодическими конформациями главной цепи - при разнообразии конформаций боковых групп.

Рис.. Вторичная структура полипептидной цепи (a-спираль и тяж b-листа) и третичная структура белковой глобулы.

Начнем со спиралей. Они могут быть левые и правые, у них может быть разный период и шаг. Правые (R) спирали приходят к нам, завиваясь против часовой стрелки (что отвечает положительному отсчету угла в тригонометрии); левые (L) - приходят, вращаясь по стрелке.

Важнейшие спирали в полипептидной цепи держатся водородными связями, где С=О группы остова полипептида связаны с лежащими от них в направлении С-конца цепи H-N группами. В принципе, возможны следующие спирали, стянутые Н-связями: 27, 310, 413 (обычно именуемая a) и 516 (она же p). Здесь в названии "27" - "2" означает связь со 2-м по цепи остатком, а "7" - число атомов в цикле (O......H-N-C"-Ca-N-C"), замыкаемом этой связью. Тот же смысл имеют цифры и в названии других спиралей.

Рис. Водородные связи (они показаны стрелками), характерные для разных спиралей.
Какие из этих спиральных структур преобладают в белках? a-спирали. Почему? Ответ на этот вопрос дает карта Рамачандрана для типичного аминокислотного остатка - аланина, на которой отмечены конформации, периодическое повторение которых приводит к завязыванию изображенных на рисунке водородных связей.

Рис. Конформации различных вторичных структур на фоне карты разрешенных и запрещенных конформаций аминокислотных остатков. 27R, 27L: правая и левая спираль 27; 310R, 310L: правая и левая спираль 310; R, L - правая и левая -спираль; R, L - правая и левая -спираль.  - -структура (подробности см. на Рис.7-8б). Р - спираль Poly(Pro)II. - конформации, разрешенные для аланина (Ala); - области, разрешенные лишь для глицина, но не для аланина и других остатков; - области, запрещенные для всех остатков.  и  - углы внутреннего вращения в белковой цепи.

Видно, что только спираль R (-правая) лежит достаточно глубоко внутри области, разрешенной для аланина (и для всех других остатков). Другие спирали лежат либо на краю этой области (например, левая спираль L или правая спираль 310), где конформационные напряжения уже возрастают, либо в области, доступной только глицину. Поэтому можно ожидать, что именно правая -спираль должна быть, как правило, более стабильной, и потому преобладать в белках - что и наблюдается. В правой -спирали все атомы упакованы оптимально: плотно, но без напряжений; поэтому не удивительно, что в белках таких спиралей много, а в фибриллярных белках они достигают гигантской длины и включают сотни аминокислотных остатков.

В середине 80-х годов началась новая эра в исследовании механизмов регуляции сворачивания белков in vivo. Было обнаружено, что в клетке существует особая категория белков, основной функцией которых является обеспечение правильного характера сворачивания полипептидных цепей в нативную структуру. Эти белки, связываясь с развернутой или частично развернутой конформацией полипептидной цепи, не дают ей "запутаться", образовать неправильные структуры. Они удерживают частично развернутый белок, способствуют его переносу в разные субклеточные образования, а также создают условия для его эффективного сворачивания. Эти белки получили название "молекулярные шапероны", образно отражающее их функцию (английское слово chaperone близко по смыслу к слову "гувернантка").








Для всякого белка характерна, помимо первичной, еще и определенная вторичная структура . Обычно белковая молекула напоминает растянутую пружину.

Это так называемая а-спираль, стабилизируемая множеством водородных связей, возникающих между находящимися поблизости друг от друга СО- и NH-группами. Атом водорода NH-группы одной аминокислоты образует такую связь с атомом кислорода СО-группы другой аминокислоты, отстоящей от первой на четыре аминокислотных остатка.

Таким образом аминокислота 1 оказывается связанной с аминокислотой 5, аминокислота 2 - с аминокислотой 6 и т. д. Рентгеноструктурный анализ показывает, что на один виток спирали приходится 3,6 аминокислотного остатка.

Полностью а-спиральную конформацию и, следовательно, фибриллярную структуру имеет белок кератин. Это структурный белок волос, шерсти, ногтей, клюва, перьев и рогов, входящий также в состав кожи позвоночных.

Твердость и растяжимость кератина варьируют в зависимости от числа дисульфидных мостиков между соседними полипептидными цепями (от степени сшивки цепей).

Теоретически все СО- и NH-группы могут участвовать в образовании водородных связей , так что а-спираль - это очень устойчивая, а потому и весьма распространенная конформация. Участки а-спирали в молекуле напоминают жесткие стержни. Тем не менее большинство белков существует в глобулярной форме, в которой также имеются участки (3-слоя (см. ниже) и участки с нерегулярной структурой.

Объясняется это тем, что образованию водородных связей препятствует ряд факторов: наличие некоторых аминокислотных остатков в полипептидной цепи, наличие дисульфидных мостиков между различными участками одной и той же цепи и, наконец, тот факт, что аминокислота пролин вообще неспособна образовывать водородные связи.

Бета-Слой, или складчатый слой - это другой тип вторичной структуры. Белок шелка фиброин, выделяемый шелкоотделительными железами гусениц шелкопряда при завивке коконов, представлен целиком именно этой формой. Фиброин состоит из ряда полипептидных цепей, вытянутых сильнее, чем цепи с конформацией альфа-спирали .

Эти цепи уложены параллельно, но соседние цепи по своему направлению противоположны одна другой (антипараллельны). Они соединены друг с другом при помощи водородных связей , возникающих между С=0- и NH-группами соседних цепей. В этом случае в образовании водородных связей также принимают участие все NH- и С=0-группы, т. е. структура тоже весьма стабильна.

Такая конформация полипептидных цепей называется бета-конформацией , а структура в целом - складчатым слоем. обладает высокой прочностью на разрыв и не поддается растяжению, но подобная организация полипептидных цепей делает шелк очень гибким. В глобулярных белках полипептидная цепь может складываться на себя, и тогда в этих точках глобулы возникают участки, имеющие структуру складчатого слоя.

Еще один способ организации полипептидных цепей мы находим у фибриллярного белка коллагена. Это тоже структурный белок, обладающий подобно кератину и фиброину высокой прочностью на разрыв. У коллагена три полипептидные цепи свиты вместе, как пряди в канате, образуя тройную спираль. В каждой полипептидной цепи этой сложной спирали, называемой тропоколлагеном, содержится около 1000 аминокислотных остатков. Отдельная полипептидная цепь представляет собой свободно свернутую спираль (но не а-спираль;).

Три цепи удерживаются вместе водородными связями . Из многих тройных спиралей, располагающихся параллельно друг другу и удерживаемых вместе ковалентными связями между соседними цепями, образуются фибриллы. Они в свою очередь объединяются в волокна. Структура коллагена формируется, таким образом, поэтапно - на нескольких уровнях - подобно структуре целлюлозы. Коллаген также невозможно растянуть, и это его свойство существенно для той функции, которую он выполняет, например, в сухожилиях, костях и других видах соединительной ткани.

Белки , существующие только в полностью спирализованной форме, подобно кератину и коллагену, представляют собой исключение среди прочих белков.

Белки - одни из важных органических элементов любой живой клетки организма. Они выполняют множество функций: опорную, сигнальную, ферментативную, транспортную, структурную, рецепторную и т. д. Важным эволюционным приспособлением стали первичная, вторичная, третичная и четвертичная структуры белков. Из чего состоят эти молекулы? Почему так важна правильная конформация протеинов в клетках организма?

Структурные компоненты белков

Мономерами любой полипептидной цепи являются аминокислоты (АК). Эти низкомолекулярные органические соединения достаточно распространены в природе и могут существовать как самостоятельные молекулы, выполняющие свойственные им функции. Среди них транспорт веществ, рецепция, ингибирование или активация ферментов.

Всего насчитывается около 200 биогенных аминокислот, однако только 20 из них могут быть Они легко растворяются в воде, имеют кристаллическую структуру и многие из них сладкие на вкус.

С химической точки зрения АК - это молекулы, в составе которых обязательно присутствуют две функциональные группы: -СООН и -NH2. С помощью этих групп аминокислоты образуют цепочки, соединяясь друг с другом пептидной связью.

Каждая из 20 протеиногенных аминокислот имеет свой радикал, в зависимости от которого разнятся химические свойства. По составу таких радикалов все АК классифицируются на несколько групп.

  1. Неполярные: изолейцин, глицин, лейцин, валин, пролин, аланин.
  2. Полярные и незаряженные: треонин, метионин, цистеин, серин, глутамин, аспарагин.
  3. Ароматические: тирозин, фенилаланин, триптофан.
  4. Полярные и заряженные отрицательно: глутамат, аспартат.
  5. Полярные и заряженные положительно: аргинин, гистидин, лизин.

Любой уровень организации структуры белка (первичный, вторичный, третичный, четвертичный) в основе имеет полипептидную цепь, состоящую из АК. Разница лишь в том, как эта последовательность складывается в пространстве и с помощью каких химических связей такая конформация поддерживается.

Первичная структура белка

Любой протеин образуется на рибосомах - немембранных органеллах клетки, которые участвуют в синтезе полипептидной цепочки. Здесь аминокислоты соединяются друг с другом с помощью прочной пептидной связи, образуя первичную структуру. Однако такая первичная структура белка от четвертичной крайне отличается, поэтому необходимо дальнейшее созревание молекулы.

Такие белки, как эластин, гистоны, глутатион, уже с такой простейшей структурой способны выполнять свои функции в организме. Для подавляющего же числа протеинов следующим этапом становится образование более сложной вторичной конформации.

Вторичная структура белка

Образование пептидных связей - это первый этап созревания большинства белков. Чтобы они могли выполнять свои функции, их локальная конформация должна претерпеть некоторые изменения. Достигается это с помощью водородных связей - непрочных, но в то же время многочисленных соединений между основным и кислотным центрами молекул аминокислот.

Так формируется вторичная структура белка, от четвертичной отличающаяся простотой комплектации и локальной конформацией. Последнее означает, что не вся цепь подвергается преобразованию. Водородные связи могут образовываться на нескольких участках разной отдаленности друг от друга, причем их форма также зависит от типа аминокислот и способа комплектации.

Лизоцим и пепсин - это представители белков, имеющих вторичную структуру. Пепсин участвует в процессах пищеварения, а лизоцим выполняет защитную функцию в организме, разрушая клеточные стенки бактерий.

Особенности вторичной структуры

Локальные конформации пептидной цепи могут отличаться друг от друга. Их уже изучено несколько десятков, и три из них являются наиболее распространенными. Среди них альфа-спираль, бета-слои и бета-поворот.

  • Альфа-спираль - одна из часто встречающихся конформаций вторичной структуры большинства белков. Представляет собой жесткий стержневой каркас с ходом в 0,54 нм. Радикалы аминокислот направлены наружу.

Наиболее распространены правозакрученные спирали, и иногда можно найти левозакрученные аналоги. Формообразующую функцию выполняют водородные связи, которые стабилизируют завитки. Цепь, которая образует альфа-спираль, содержит очень мало пролина и полярных заряженных аминокислот.

  • Бета-поворот выделяют в отдельную конформацию, хотя это можно назвать частью бета-слоя. Суть заключается в изгибе пептидной цепочки, который поддерживается водородными связями. Обычно само место изгиба состоит из 4-5 аминокислот, среди которых обязательно наличие пролина. Эта АК единственная имеет жесткий и короткий скелет, что позволяет образовать сам поворот.
  • Бета-слой представляет собой цепочку аминокислот, которая образует несколько изгибов и стабилизирует их водородными связями. Такая конформация очень напоминает сложенный в гармошку лист бумаги. Чаще всего такую форму имеют агрессивные белки, однако встречается немало исключений.

Различают параллельный и антипараллельный бета-слой. В первом случае С- и N- концы в местах изгиба и на концах цепи совпадают, а во втором случае нет.

Третичная структура

Дальнейшая упаковка белка приводит к формированию третичной структуры. Стабилизируется такая конформация с помощью водородных, дисульфидных, гидрофобных и ионных связей. Их большое количество позволяет скрутить вторичную структуру в более сложную форму и стабилизировать ее.

Разделяют глобулярные и Молекула глобулярных пептидов представляет собой шаровидную структуру. Примеры: альбумин, глобулин, гистоны в третичной структуре.

Формируют прочные тяжи, длина которых превышает их ширину. Такие протеины чаще всего выполняют структурную и формообразующую функции. Примерами служат фиброин, кератин, коллаген, эластин.

Структура белков в четвертичной структуре молекулы

Если несколько глобул объединяются в один комплекс, формируется так называемая четвертичная структура. Такая конформация характерна не для всех пептидов, и она образуется при необходимости выполнения важных и специфических функций.

Каждая глобула в составе представляет собой отдельный домен или протомер. В совокупности молекулы называется олигомером.

Обычно такой белок имеет несколько устойчивых конформаций, которые постоянно сменяют друг друга либо в зависимости от воздействия каких-либо внешних факторов, либо при необходимости выполнения разных функций.

Важным отличием третичной структуры белка от четвертичной являются межмолекулярные связи, которые и отвечают за соединение нескольких глобул. В центре всей молекулы часто располагается ион металла, который напрямую влияет на образование межмолекулярных связей.

Дополнительные структуры белка

Не всегда цепочки аминокислот достаточно для выполнения функций белка. В большинстве случаев к таким молекулам присоединяются другие вещества органической и неорганической природы. Т. к. эта особенность характерна для подавляющего числа ферментов, состав сложных протеидов принято делить на три части:

  • Апофермент - это белковая часть молекулы, представляющая собой аминокислотную последовательность.
  • Кофермент - не белковая, но органическая часть. В ее состав могут входить различные типы липидов, углеводов или даже нуклеиновых кислот. Сюда относятся и представители биологически активных соединений, среди которых встречаются витамины.
  • Кофактор - неорганическая часть, представленная в подавляющем большинстве случаев ионами металлов.

Структура белков в четвертичной структуре молекулы требует участия нескольких молекул разного происхождения, поэтому многие ферменты имеют сразу три составляющие. Примером служит фосфокиназа - фермент, обеспечивающий перенос фосфатной группы от молекулы АТФ.

Где образуется четвертичная структура молекулы белка?

Полипептидная цепь начинает синтезироваться на рибосомах клетки, однако дальнейшее созревание протеина происходит уже в других органеллах. Новообразованная молекула должна попасть в транспортную систему, которая состоит из ядерной мембраны, ЭПС, аппарата Гольджи и лизосом.

Усложнение пространственного строения белка происходит в эндоплазматической сети, где не только формируются различные виды связей (водородные, дисульфидные, гидрофобные, межмолекулярные, ионные), но и присоединяются кофермент и кофактор. Так образуется четвертичная структура белка.

Когда молекула полностью готова к работе, она попадает либо в цитоплазму клетки, либо в аппарат Гольджи. В последнем случае эти пептиды упаковываются в лизосомы и транспортируются к другим компартментам клетки.

Примеры олигомерных белков

Четвертичная структура - это структура белков, которая призвана способствовать выполнению жизненно важных функций в живом организме. Сложная конформация органических молекул позволяет, прежде всего, влиять на работу многих метаболических процессов (ферменты).

Биологически важными белками являются гемоглобин, хлорофилл и гемоцианин. Порфириновое кольцо является основой этих молекул, в центре которых - ион металла.

Гемоглобин

Четвертичная структура молекулы белка гемоглобина представляет собой 4 глобулы, соединенных межмолекулярными связями. В центре - порфин с ионом двухвалентного железа. Белок переносится в цитоплазме эритроцитов, где занимают около 80 % всего объема цитоплазмы.

Основой молекулы является гем, который имеет больше неорганическую природу и окрашен в красный цвет. Также это распада гемоглобина в печени.

Все мы знаем, что гемоглобин выполняет важную транспортную функцию - перенос кислорода и углекислого газа по организму человека. Сложная конформация молекулы белка формирует специальные активные центры, которые и способны связывать соответствующие газы с гемоглобином.

Когда образуется комплекс "белок-газ", формируются так называемые оксигемоглобин и карбогемоглобин. Однако есть еще одна разновидность таких объединений, которая достаточно устойчива: карбоксигемоглобин. Представляет собой комплекс из белка и угарного газа, устойчивость которого объясняет приступы удушья при чрезмерной токсикации.

Хлорофилл

Еще один представитель белков с четвертичной структурой, связи доменов которого поддерживает уже ион магния. Главная функция всей молекулы - участие в процессах фотосинтеза у растений.

Существуют различные типы хлорофиллов, которые отличаются друг от друга радикалами порфиринового кольца. Каждая из этих разновидностей отмечается отдельной буквой латинского алфавита. Например, для наземных растений характерно наличие хлорофилла а или хлорофилла b, а у водорослей встречаются и другие типы этого белка.

Гемоцианин

Эта молекула - аналог гемоглобина у многих низших животных (членистоногие, моллюски и т. д.). Основным отличием структуры белка с четвертичной структурой молекулы является наличие иона цинка вместо иона железа. Гемоцианин имеет голубоватый цвет.

Иногда люди задаются вопросом о том, что было бы, если заменить гемоглобин человека гемоцианином. В таком случае нарушается привычное содержание веществ в крови, а в частности аминокислот. Также гемоцианин нестабильно образует комплекс с углекислым газом, поэтому «голубая кровь» имела бы склонность к образованию тромбов.

Пептидные цепи белков организованы во вторичную структуру, стабилизированную водородными связями. Атом кислорода каждой пептидной группы образует при этом водородную связь с NH-группой, соответствующей пептидной связи. При этом формируются следующие структуры: а-спираль, структура и р-изгиб.

а-Спираль. Одной из наиболее термодинамически выгодных структур является правая а-спираль. На рис. 3.1 изображена а-спираль, представляющая устойчивую структуру, в которой каждая карбонильная группа образует водородную связь с четвертой по ходу цепи NH-группой. В а-спирали на один ее виток приходится 3,6 аминокислотного остатка, шаг спирали составляет примерно 0,54 нм, а расстояние между остатками - 0,15 нм. В а-спиральных участках торсионные углы ф и у равны 60 и 45 е и последовательно расположенные полипептидные звенья взаимно ориентированы.

L-Аминокислоты могут образовывать только правые а-спирали, причем боковые радикалы расположены по обе стороны оси и обращены наружу. В а-спирали полностью использована возможность образования водородных связей, поэтому она не способна в отличие от p-структуры образовывать водородные связи с другими элементами вторичной структуры. При образовании а-спирали боковые цепи аминокислот могут сближаться, образуя гидрофобные или гидрофильные компактные сайты. Эти сайты играют существенную роль при образовании трехмерной конформации белковой макромолекулы, так как используются для упаковки а-спиралей в пространственной структуре белка.

Рис. 3.1. а-Спираль белка аполипопротсина С-1 (но В. М. Степанову): а - гидрофильная поверхность: б - гидрофобная поверхность а-спирали белка

Спираль-клубок. Содержание а-спиралсй в белках неодинаково и является индивидуальной особенностью каждой белковой макромолекулы. Для некоторых белков, например для миоглобина, а-спираль лежит в основе структуры, другие, например химотрипсин, не имеют а-спирализованных участков. В среднем глобулярные белки имеют степень спирализации порядка 60-70%. Спирализованные участки чередуются с хаотическими клубками, причем в результате денатурации переходы спираль-клубок увеличиваются. Спирализация полипептидной цепи зависит от аминокислотных остатков, ее образующих. Так, отрицательно заряженные группы глутаминовой кислоты, расположенные в непосредственной близости друг от друга, испытывают сильное взаимное отталкивание, что препятствует образованию соответствующих водородных связей в а-спирали. По той же причине спирализация цепи затруднена в результате отталкивания близко расположенных положительно заряженных химических группировок лизина или аргинина. Большие размеры радикалов аминокислот также являются причиной, по которой спирализация полипептидной цепи затруднена (серин, треонин, лейцин). Наиболее часто интерферирующим фактором при образовании а-спирали является аминокислота пролин. Как известно, в пролине атом азота входит в состав жесткого кольца, что препятствует вращению вокруг связи N-С а. Кроме того, пролин не образует внутрицепочечную водородную связь из-за отсутствия при атоме азота водородного атома. Таким образом, во всех случаях, когда в полипептидной цепи встречается пролин, а-спиральная структура нарушается и образуется клубок или р-изгиб.

Р-Структура. В отличие от а-спирали p-структура образована за счет межцепочечных водородных связей между соседними участками полипептидной цепи, так как внугрицепочечные контакты отсутствуют. Если эти участки направлены в одну сторону, то такая структура называется параллельной (ср = -119°, ц/ = +113°) (рис. 3.2), если же в противоположную (у = +135°), то анти параллельной (рис. 3.3).


Рис. 3.2. Параллельная p-структура флаволокеина (по В. М. Степанову): пунктиром показаны водородные связи


Рис. 3.3.

Полипептидная цепь в p-структуре сильно вытянута и имеет не спиральную, а скорее зигзагообразную форму. Расстояние между соседними аминокислотными остатками по оси составляет 0,35 нм, т. е. в три раза больше, чем в а-спирали, число остатков на виток равно 2.

В случае параллельного расположения p-структуры водородные связи менее прочны по сравнению с таковыми при антипараллельном расположении аминокислотных остатков. В отличие от а-спирали, насыщенной водородными связями, каждый участок полипептидной цепи в p-структуре открыт для образования дополнительных водородных связей. Сказанное относится как к параллельной, так и к антипараллельной p-структуре, однако в антипарал- лельной структуре связи более стабильны. В отрезке полипептидной цепи, образующей p-структуру, находится от трех до семи аминокислотных остатков, а сама p-структура состоит из 2-6 цепей, хотя их число может быть и большим. p-Структура имеет складчатую форму, зависящую от соответствующих а-угле- родных атомов. Поверхность ее может быть плоской и левозакрученной таким образом, чтобы угол между отдельными отрезками цепи составлял 20-25° (рис. 3.4).

Рис. 3.4.

Рис. 3.5.

р-Изгиб. Глобулярные белки имеют шарообразную форму во многом благодаря тому, что для полипептидной цепи характерно наличие петель, зигзагов, шпилек, причем направление цепи может изменяться даже на 180°. В последнем случае имеет место p-изгиб (рис. 3.5).

Этот изгиб по форме напоминает шпильку для волос и стабилизируется одной водородной связью. Фактором, препятствующим его образованию, могут быть большие боковые радикалы, и поэтому довольно часто наблюдается включение в него наименьшего аминокислотного остатка - глицина. Эта конфигурация оказывается всегда на поверхности белковой глобулы, в связи с чем р-изгиб принимает участие во взаимодействии с другими полипептидными цепями.

Супервторичные структуры. Впервые супервторичные структуры белков были постулированы и затем обнаружены Л. Полингом и Р. Кори. В качестве примера можно привести суперспирализованную а-спираль, в которой две а- спирали скручены в левую суперспираль (рис. 3.6). Однако чаше суперспиральные структуры включают в себя как а-спирали, так и р-складчатыс листы. Их состав может быть представлен следующим образом: (cm), (ар), (ра) и (РХР). Последний вариант представляет собой два параллельных складчатых листа, между которыми находится статистический клубок (рСр), а-спираль (раР) или p-структура (РРР).

Соотношение между вторичной и супервторичной структурами имеет высокую степень вариабильности и зависит от индивидуальных особенностей той или иной белковой макромолекулы.

Домены - более сложные уровни организации вторичной структуры. Они представляют собой обособленные глобулярные участки, соединенные друг с другом короткими так называемыми шарнирными участками полипептидной цепи. Д. Бирктофт одним из первых описал доменную организацию химотрипсина, отметив наличие двух доменов у этого белка. Каждый из них имеет цилиндрическую форму, образованную p-структурой, и состоит из 6 антипараллельных цепей. В один из этих доменов входят 139 аминокислот с УУ-конца, другой - С-концевой включает в себя 115 аминокислотных остатков.


Рис. 3.6.

цилиндрами обозначены а-спирали; затемненные области - нсспирялизованные участки; стрелки - р-складчатые слои

Доменная организация характерна для многих белков. В этих белках, как правило, находится несколько структурных доменов, каждый из которых содержит до 200 аминокислотных остатков. Примером тому может быть белок глицеральдегидфосфатдегидрогеназа (ГАФД) (рис. 3.7).

В некоторых белках, например в иммуноглобулинах или сериновых про- тсиназах, структурные домены сходны по своей первичной структуре, что указывает на возможный механизм дубликации соответствующих генов, в других белках, например в гемоглобине, имеются определенные различия

Рис. 3.8. Домены гемоглобина человека: цилиндры - u-спирали; связывающие их нити - аморфные участки (по PDB-2001) (Yang, J., Kloek, А. Р., Goldberg, D. Е., Mathews, F. S.: Proc. Natl. Acad. Sci. USA, 92. p. 4224, 1995)


Рис. 3.7. Домены ГАФД из мышц омара (по А. А. Анисимову): а - НАД"-связывающий домен; 6 - каталитический домен

(рис. 3.8). По строению домены в белках разделяют на несколько групп в зависимости от содержания в них а-спиралей и ^-складчатых листов.

Таким образом, можно отметить следующее.

  • Водородные связи достаточно лабильны сами по себе, причем уязвимость их увеличивается при образовании вторичной структуры, так как карбоксильные и аминные группы могут взаимодействовать не только между собой, но и с водой. Оказалось, что вторичная структура является достаточно устойчивой только при образовании компактной белковой глобулы.
  • Формирование вторичной структуры обусловлено последовательностью аминокислотных остатков в полипептидной цепи. Боковые радикалы, взаимодействуя друг с другом, индуцируют процесс образования пространственной структуры, наиболее стабильной ее конформации. Более того, оказалось возможным предсказать тип вторичной структуры наиболее точно для а-спи- рали по сравнению с р-складчатыми листами.
Понравилась статья? Поделитесь ей